Switch to: References

Add citations

You must login to add citations.
  1. Quantum probability and unified approach to quantization and dynamics.Blagowest A. Nikolov - 1996 - Foundations of Physics 26 (2):257-269.
    A simplified derivation of the Gudder-Hemion quantum probability formula is proposed. Defining configurations as the classical (q, p) deterministic states and generalized action as the (quantum) generating function of a canonical transformation, we obtain the usual quantization rules (for arbitrary polynomial quantities) and derive the Schrödinger wave equation on the same grounds. This approach suggests a statistical interpretation of the wave function in terms of the classical canonical transformations.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum probability and operational statistics.Stanley Gudder - 1990 - Foundations of Physics 20 (5):499-527.
    We develop the concept of quantum probability based on ideas of R. Feynman. The general guidelines of quantum probability are translated into rigorous mathematical definitions. We then compare the resulting framework with that of operational statistics. We discuss various relationship between measurements and define quantum stochastic processes. It is shown that quantum probability includes both conventional probability theory and traditional quantum mechanics. Discrete quantum systems, transition amplitudes, and discrete Feynman amplitudes are treated. We close with some examples that illustrate previously (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum stochastic models.Stanley Gudder - 1992 - Foundations of Physics 22 (6):839-852.
    Quantum stochastic models are developed within the framework of a measure entity. An entity is a structure that describes the tests and states of a physical system. A measure entity endows each test with a measure and equips certain sets of states as measurable spaces. A stochastic model consists of measurable realvalued function on the set of states, called a generalized action, together with measures on the measurable state spaces. This structure is then employed to compute quantum probabilities of test (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Realistic spin.Stanley Gudder - 1992 - Foundations of Physics 22 (1):107-120.
    We present a realistic model in which spin measurements are represented by functions. By employing a simple amplitude density, we derive the usual spin distributions and matrices for the spin-1/2 case. The spin-1 case is also considered. Moreover, we derive the amplitude density itself from deeper principles involving a real-valued influence function.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark