Switch to: References

Add citations

You must login to add citations.
  1. Losing Your Marbles in Wavefunction Collapse Theories.Rob Clifton & Bradley Monton - 1999 - British Journal for the Philosophy of Science 50 (4):697 - 717.
    Peter Lewis ([1997]) has recently argued that the wavefunction collapse theory of GRW (Ghirardi, Rimini and Weber [1986]) can only solve the problem of wavefunction tails at the expense of predicting that arithmetic does not apply to ordinary macroscopic objects. More specifically, Lewis argues that the GRW theory must violate the enumeration principle: that 'if marble 1 is in the box and marble 2 is in the box and so on through marble n, then all n marbles are in the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Independently Motivating the Kochen—Dieks Modal Interpretation of Quantum Mechanics.Rob Clifton - 1995 - British Journal for the Philosophy of Science 46 (1):33-57.
    The distinguishing feature of ‘modal’ interpretations of quantum mechanics is their abandonment of the orthodox eigenstate–eigenvalue rule, which says that an observable possesses a definite value if and only if the system is in an eigenstate of that observable. Kochen's and Dieks' new biorthogonal decomposition rule for picking out which observables have definite values is designed specifically to overcome the chief problem generated by orthodoxy's rule, the measurement problem, while avoiding the no-hidden-variable theorems. Otherwise, their new rule seems completely ad (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  • Fundamental Nomic Vagueness.Eddy Keming Chen - 2022 - Philosophical Review 131 (1):1-49.
    If there are fundamental laws of nature, can they fail to be exact? In this paper, I consider the possibility that some fundamental laws are vague. I call this phenomenon 'fundamental nomic vagueness.' I characterize fundamental nomic vagueness as the existence of borderline lawful worlds and the presence of several other accompanying features. Under certain assumptions, such vagueness prevents the fundamental physical theory from being completely expressible in the mathematical language. Moreover, I suggest that such vagueness can be regarded as (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
  • El problema interpretativo de la mecánica cuántica. Interpretación minimal e interpretaciones totales.Alejandro Cassini - 2016 - Revista de Humanidades de Valparaíso 8:9-42.
    In this paper I contend that standard quantum theory has a minimal interpretation, on which all physicists agree. That interpretation is sufficient for every application of quantum theory and it has been confirmed by a countless number of experiments. However, it provides neither an overall picture of the quantum world nor an intended ontology for quantum theory. For those reasons, several full interpretations have been proposed in order to complete the minimal interpretation. I then argue that those interpretations –which are (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum monism: an assessment.Claudio Calosi - 2018 - Philosophical Studies 175 (12):3217-3236.
    Monism is roughly the view that there is only one fundamental entity. One of the most powerful argument in its favor comes from quantum mechanics. Extant discussions of quantum monism are framed independently of any interpretation of the quantum theory. In contrast, this paper argues that matters of interpretation play a crucial role when assessing the viability of monism in the quantum realm. I consider four different interpretations: modal interpretations, Bohmian mechanics, many worlds interpretations, and wavefunction realism. In particular, I (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Humean Supervenience, Composition as Identity and Quantum Wholes.Claudio Calosi & Matteo Morganti - 2016 - Erkenntnis 81 (6):1173-1194.
    In this paper, we focus on two related reductive theses in metaphysics—Humean Supervenience and Composition as Identity—and on their status in light of the indications coming from science, in particular quantum mechanics. While defenders of these reductive theses claim that they can be updated so as to resist the quantum evidence, we provide arguments against this contention. We claim that physics gives us reason for thinking that both Humean Supervenience and Composition as Identity are at least contingently false, as the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Status of the Wave Function of Quantum Mechanics, or, What is Quantum Mechanics Trying to Tell Us?D.-M. Cabaret, T. Grandou & E. Perrier - 2022 - Foundations of Physics 52 (3):1-29.
    The most debated status of the wave function of Quantum Mechanics is discussed in the light of the epistemological vs ontological opposition.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Assessing the Montevideo interpretation of quantum mechanics.Jeremy Butterfield - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part A):75-85.
    This paper gives a philosophical assessment of the Montevideo interpretation of quantum theory, advocated by Gambini, Pullin and co-authors. This interpretation has the merit of linking its proposal about how to solve the measurement problem to the search for quantum gravity: namely by suggesting that quantum gravity makes for fundamental limitations on the accuracy of clocks, which imply a type of decoherence that “collapses the wave-packet”. I begin by sketching the topics of decoherence, and quantum clocks, on which the interpretation (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Unsharp Quantum Reality.Paul Busch & Gregg Jaeger - 2010 - Foundations of Physics 40 (9-10):1341-1367.
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency—or potentiality—of (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Completely positive mappings in quantum dynamics and measurement theory.Paul Busch & Pekka J. Lahti - 1990 - Foundations of Physics 20 (12):1429-1439.
    The role of completely positive mappings in quantum dynamics and measurement theory is reanalyzed in light of the possibility of a generalized dynamics.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Quantum-Classical Transition of a Single Particle.Agung Budiyono - 2010 - Foundations of Physics 40 (8):1117-1133.
    We discuss the issue of quantum-classical transition in a system of a single particle with and without external potential. This is done by elaborating the notion of self-trapped wave function recently developed by the author. For a free particle, we show that there is a subset of self-trapped wave functions which is particle-like. Namely, the spatially localized wave packet is moving uniformly with undistorted shape as if the whole wave packet is indeed a classical free particle. The length of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Why the quantum?Jeffrey Bub - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):241-266.
  • Fermi’s Golden Rule and the Second Law of Thermodynamics.D. Braak & J. Mannhart - 2020 - Foundations of Physics 50 (11):1509-1540.
    We present a Gedankenexperiment that leads to a violation of detailed balance if quantum mechanical transition probabilities are treated in the usual way by applying Fermi’s “golden rule”. This Gedankenexperiment introduces a collection of two-level systems that absorb and emit radiation randomly through non-reciprocal coupling to a waveguide, as realized in specific chiral quantum optical systems. The non-reciprocal coupling is modeled by a hermitean Hamiltonian and is compatible with the time-reversal invariance of unitary quantum dynamics. Surprisingly, the combination of non-reciprocity (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A Bi-directional Big Bang/Crunch Universe within a Two-State-Vector Quantum Mechanics?Fritz W. Bopp - 2019 - Foundations of Physics 49 (1):53-62.
    A two boundary quantum mechanics incorporating a big bang/big crunch universe is carefully considered. After a short motivation of the concept we address the central question how a proposed a-causal quantum universe can be consistent with what is known about macroscopia and how it might find experimental support.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • De Sitter Space Without Dynamical Quantum Fluctuations.Kimberly K. Boddy, Sean M. Carroll & Jason Pollack - 2016 - Foundations of Physics 46 (6):702-735.
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantum Mechanics and the Plight of Physicalism.Fernando Birman - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):207-225.
    The literature on physicalism often fails to elucidate, I think, what the word physical in physical ism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental , such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of non-mentality”, is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Modal Interpretations of Quantum Mechanics and Relativity: A Reconsideration. [REVIEW]Joseph Berkovitz & Meir Hemmo - 2004 - Foundations of Physics 35 (3):373-397.
    Two of the main interpretative problems in quantum mechanics are the so-called measurement problem and the question of the compatibility of quantum mechanics with relativity theory. Modal interpretations of quantum mechanics were designed to solve both of these problems. They are no-collapse (typically) indeterministic interpretations of quantum mechanics that supplement the orthodox state description of physical systems by a set of possessed properties that is supposed to be rich enough to account for the classical-like behavior of macroscopic systems, but sufficiently (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Comparison Between Models of Gravity Induced Decoherence.Sayantani Bera, Sandro Donadi, Kinjalk Lochan & Tejinder P. Singh - 2015 - Foundations of Physics 45 (12):1537-1560.
    It has been suggested in the literature that spatial coherence of the wave function can be dynamically suppressed by fluctuations in the spacetime geometry. These fluctuations represent the minimal uncertainty that is present when one probes spacetime geometry with a quantum probe. Two similar models have been proposed, one by Diósi and one by Karolyhazy and collaborators, based on apparently unrelated minimal spacetime bounds. The two models arrive at somewhat different expressions for the dependence of the localization coherence length on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Weirdness Theorem and the Origin of Quantum Paradoxes.Alessio Benavoli, Alessandro Facchini & Marco Zaffalon - 2021 - Foundations of Physics 51 (5):1-39.
    We argue that there is a simple, unique, reason for all quantum paradoxes, and that such a reason is not uniquely related to quantum theory. It is rather a mathematical question that arises at the intersection of logic, probability, and computation. We give our ‘weirdness theorem’ that characterises the conditions under which the weirdness will show up. It shows that whenever logic has bounds due to the algorithmic nature of its tasks, then weirdness arises in the special form of negative (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Time Reversal Symmetry and Collapse Models.D. J. Bedingham & O. J. E. Maroney - 2017 - Foundations of Physics 47 (5):670-696.
    Dynamical collapse models embody the idea of a physical collapse of the wave function in a mathematically well-defined way. They involve modifications to the standard rules of quantum theory in order to describe collapse as a physical process. This appears to introduce a time reversal asymmetry into the dynamics since the state at any given time depends on collapses in the past but not in the future. Here we challenge this conclusion by demonstrating that, subject to specified model constraints, collapse (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting Quantum Mechanics according to a Pragmatist Approach.Manuel Bächtold - 2008 - Foundations of Physics 38 (9):843-868.
    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Five Formulations of the Quantum Measurement Problem in the Frame of the Standard Interpretation.Manuel Bächtold - 2008 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 39 (1):17-33.
    The aim of this paper is to give a systematic account of the so-called “measurement problem” in the frame of the standard interpretation of quantum mechanics. It is argued that there is not one but five distinct formulations of this problem. Each of them depends on what is assumed to be a “satisfactory” description of the measurement process in the frame of the standard interpretation. Moreover, the paper points out that each of these formulations refers not to a unique problem, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Are all measurement outcomes “classical”?Manuel Bächtold - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):620-633.
  • Postulates for time evolution in quantum mechanics.B. Baumgartner - 1994 - Foundations of Physics 24 (6):855-872.
    A detailed list of postulates is formulated in an algebraic setting. These postulates are sufficient to entail the standard time evolution governed by the Schrödinger or Dirac equation. They are also necessary in a strong sense: Dropping any one of the postulates allows for other types of time evolution, as is demonstrated with examples. Some philosophical remarks hint on possible further investigations.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Discussion. More about dynamical reduction and the enumeration principle.A. Bassi & G.-C. Ghirardi - 1999 - British Journal for the Philosophy of Science 50 (4):719-734.
    In view of the arguments put forward by Clifton and Monton [this volume], we reconsider the alleged conflict of dynamical reduction models with the enumeration principle. We prove that our original analysis of such a problem is correct, that the GRW model does not meet any difficulty and that the reasoning of the above authors is inappropriate since it does not take into account the correct interpretation of the dynamical reduction theories.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The origins of the research on the foundations of quantum mechanics in Italy during the 1970s.Angelo Baracca, Silvio Bergia & Flavio Del Santo - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:66-79.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Situated observation in Bohmian mechanics.Jeffrey A. Barrett - 2021 - Studies in History and Philosophy of Science Part A 88 (C):345-357.
  • Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • “It from Bit” and Quantum Mechanics.Ali Barzegar, Afshin Shafiee & Mostafa Taqavi - 2020 - Foundations of Science 25 (2):375-384.
    John Archibald Wheeler is one of the staunchest advocates of the idea that information is more fundamental than anything else in physics. In this paper, we examine the status of this idea summarized in Wheeler’s slogan ‘it from bit’ in the context of Bohmian Mechanics and spontaneous collapse models. We will argue that any question about the status of ‘it from bit’ crucially depends on the particular interpretation of these theories one favors.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Introduction.Jeffrey A. Barrett - 1995 - Topoi 14 (1):1-6.
    On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Entanglement and disentanglement in relativistic quantum mechanics.Jeffrey A. Barrett - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):168-174.
  • Approximate Truth and Descriptive Nesting.Jeffrey Alan Barrett - 2008 - Erkenntnis 68 (2):213-224.
    There is good reason to suppose that our best physical theories, quantum mechanics and special relativity, are false if taken together and literally. If they are in fact false, then how should they count as providing knowledge of the physical world? One might imagine that, while strictly false, our best physical theories are nevertheless in some sense probably approximately true. This paper presents a notion of local probable approximate truth in terms of descriptive nesting relations between current and subsequent theories. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • A Quantum-Mechanical Argument for Mind–Body Dualism.Jeffrey A. Barrett - 2006 - Erkenntnis 65 (1):97-115.
    I argue that a strong mind–body dualism is required of any formulation of quantum mechanics that satisfies a relatively weak set of explanatory constraints. Dropping one or more of these constraints may allow one to avoid the commitment to a mind–body dualism but may also require a commitment to a physical–physical dualism that is at least as objectionable. Ultimately, it is the preferred basis problem that pushes both collapse and no-collapse theories in the direction of a strong dualism in resolving (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Nonstandard Formulation of Bohmian Mechanics.Jeffrey Barrett & Isaac Goldbring - forthcoming - British Journal for the Philosophy of Science.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
  • Are all measurement outcomes “classical”?Manuel Bächtold - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):620-633.
  • What does the world look like according to superdeterminism.Augustin Baas & Baptiste Le Bihan - 2023 - British Journal for the Philosophy of Science 74 (3):555-572.
    The violation of Bell inequalities seems to establish an important fact about the world: that it is non-local. However, this result relies on the assumption of the statistical independence of the measurement settings with respect to potential past events that might have determined them. Superdeterminism refers to the view that a local, and determinist, account of Bell inequalities violations is possible, by rejecting this assumption of statistical independence. We examine and clarify various problems with superdeterminism, looking in particular at its (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Does quantum electrodynamics have an arrow of time?☆.David Atkinson - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):528-541.
    Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial state of high order, together with the quantum version of the equiprobability postulate.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Does quantum electrodynamics have an arrow of time?David Atkinson - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):528-541.
    Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial state of high order, together with the quantum version of the equiprobability postulate.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Does quantum electrodynamics have an arrow of time?David Atkinson - 2005 - Studies in History and Philosophy of Modern Physics 37 (3):528-541.
    Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial state of high order, together with the quantum version of the equiprobability postulate.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such debate, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Quantum Measurement Problem and the Possible Role of the Gravitational Field.J. Anandan - 1999 - Foundations of Physics 29 (3):333-348.
    The quantum measurement problem and various unsuccessful attempts to resolve it are reviewed. A suggestion by Diosi and Penrose for the half-life of the quantum superposition of two Newtonian gravitational fields is generalized to an arbitrary quantum superposition of relativistic, but weak, gravitational fields. The nature of the “collapse” process of the wave function is examined.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (199):12271–12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, nonepistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to radical (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum mechanics, time and ontology.Valia Allori - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):145-154.
    Against what is commonly accepted in many contexts, it has been recently suggested that both deterministic and indeterministic quantum theories are not time‐reversal invariant, and thus time is handed in a quantum world. In this paper, I analyze these arguments and evaluate possible reactions to them. In the context of deterministic theories, first I show that this conclusion depends on the controversial assumption that the wave‐function is a physically real scalar field in configuration space. Then I argue that answers which (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2014 - British Journal for the Philosophy of Science 65 (2):323-352.
    A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focusing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   43 citations