Citations of:
Add citations
You must login to add citations.
|
|
The Mass Density approach to GRW (GRWm for short) has been widely discussed in the quantum foundations literature. A crucial feature of GRWm is the introduction of a Criterion of Accessibility for mass, which allows to explain the determinacy of experimental outcomes thus also addressing the tails problem of GRW. However, the Criterion of Accessibility leaves the ontological meaning of the non-accessible portion of mass utterly unexplained. In this paper I discuss two viable approaches to non-accessible mass, which I call (...) |
|
The aim of this paper is to invalidate the hypothesis that human consciousness is necessary in the quantum measurement process. In order to achieve this target, I propose a considerable modification of the Schrödinger’s cat and the Dead-Alive Physicist thought experiments, called “PIAR”, short for “Physicist Inside the Ambiguous Room”. A specific strategy has enabled me to plan the experiment in such a way as to logically justify the inconsistency of the above hypothesis and to oblige its supporters to rely (...) |
|
Lewis 313) has recently presented an argument claiming that, under the Ghirardi–Rimini–Weber theory of quantum mechanics, arithmetic does not apply to ordinary macroscopic objects such as marbles . In this paper, I disentangle two different lines of Lewis's argument, one devoted to what I call the standard GRW interpretation and the other to the mass density interpretation . I present both strains of Lewis's argument, and move on to criticise Lewis's position, focusing on his argument with respect to MDI. I (...) |
|
|
|
|
|
Instead of the usual asymptotic passage from quantum mechanics to classical mechanics when a parameter tended to infinity, a sharp boundary is obtained for the domain of existence of classical reality. The last is treated as separable empirical reality following d'Espagnat, described by a mathematical superstructure over quantum dynamics for the universal wave function. Being empirical, this reality is constructed in terms of both fundamental notions and characteristics of observers. It is presupposed that considered observers perceive the world as a (...) |
|
The conceptual structure of orthodox quantum mechanics has not provided a fully satisfactory and coherent description of natural phenomena. With particular attention to the measurement problem, we review and investigate two unorthodox formulations. First, there is the model advanced by GRWP, a stochastic modification of the standard Schrödinger dynamics admitting statevector reduction as a real physical process. Second, there is the ontological interpretation of Bohm, a causal reformulation of the usual theory admitting no collapse of the statevector. Within these two (...) |
|
We reconsider the nonlocal aspects of quantum mechanics with special reference to the EPR argument. We first confine our considerations to the correlations between the outcomes of measurements on spatially distant constituents, without worrying about the measurement problem. We pay particular attention to the relativistic aspects of the problem. Our first conclusion is that, when developed along the lines we follow, the EPR inference that quantum correlations and locality together imply incompleteness, is appropriate. We then investigate whether the other common (...) |
|
We apply the distinction between parameter independence and outcome independence to the linear and nonlinear models of a recent nonrelativistic theory of continuous state vector reduction. We show that in the nonlinear model there is a set of realizations of the stochastic process that drives the state vector reduction for which parameter independence is violated for parallel spin components in the EPR-Bohm setup. Such a set has an appreciable probability of occurrence (≈ 1/2). On the other hand, the linear model (...) |
|
Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise characterization of the idea (...) |
|
We reconsider the problem of the compatibility of quantum nonlocality and the requests for a relativistically invariant theoretical scheme. We begin by discussing a recent important paper by T. Norsen on this problem and we enlarge our considerations to give a general picture of the conceptually relevant issue to which this paper is devoted. |
|
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe systems within a genuine Hilbert space framework, the peculiar features of the spontaneous reduction models limit drastically the states which are dynamically stable. (...) |
|
This is a tentative theory of quantum measurement performed on particles with unspecified mass. For such a particle, the center of the wave packet undergoes a classical motion which is a precious guide to our approach. The framework is manifestly covariant and a priori nonlocal. It allows for describing an irreversible process which lasts during a nonvanishing lapse of time. The possibility to measure a dynamical variable in an arbitrary slate is discussed. Our picture is most satisfactory if we focus (...) |
|
I introduce and review the most recent and most promising model of state vector reduction, that of Ghirardi, Rimini, Weber, and Pearle. This model requires the specification of a reduction basis. At least two questions therefore arise: Are there physical reasons to choose one basis rather than another? Does the choice made lead to any undesirable consequences? I argue that there arephysical reasons to choose from a certain class of reduction bases (a class which includes the choice made by the (...) |
|
GRW models of the physical world are criticized in the literature for involving wave function "tails" that allegedly create fatal interpretive problems and even compromise standard arithmetic. I find such objections both unfair and misguided. But not all is well with the GRW approach. One complaint I articulate in this paper does not have to do with tails as such but with the specific way in which past physical structures linger forever in the total GRW wave function. By pushing the (...) |
|
Peter Lewis ([1997]) has recently argued that the wavefunction collapse theory of GRW (Ghirardi, Rimini and Weber [1986]) can only solve the problem of wavefunction tails at the expense of predicting that arithmetic does not apply to ordinary macroscopic objects. More specifically, Lewis argues that the GRW theory must violate the enumeration principle: that 'if marble 1 is in the box and marble 2 is in the box and so on through marble n, then all n marbles are in the (...) |
|
A mechanism describing state reduction dynamics in relativistic quantum field theory is outlined. The mechanism involves nonlinear stochastic modifications to the standard description of unitary state evolution and the introduction of a relativistic field in which a quantized degree of freedom is associated to each point in spacetime. The purpose of this field is to mediate in the interaction between classical stochastic influences and conventional quantum fields. The equations of motion are Lorentz covariant, frame independent, and do not result in (...) |
|
In a recent paper, Conway and Kochen proposed what is now known as the “Free Will theorem” which, among other things, should prove the impossibility of combining GRW models with special relativity, i.e., of formulating relativistically invariant models of spontaneous wavefunction collapse. Since their argument basically amounts to a non-locality proof for any theory aiming at reproducing quantum correlations, and since it was clear since very a long time that any relativistic collapse model must be non-local in some way, we (...) |
|
The violation of Bell’s inequality has shown that quantum theory and relativity are in tension: reality is nonlocal. Nonetheless, many have argued that GRW-type theories are to be preferred to pilot-wave theories as they are more compatible with relativity: while relativistic pilot-wave theories require a preferred slicing of space-time, foliation-free relativistic GRW-type theories have been proposed. In this paper I discuss various meanings of ‘relativistic invariance,’ and I show how GRW-type theories, while being more relativistic in one sense, are less (...) |
|
Quantum mechanics, with its revolutionary implications, has posed innumerable problems to philosophers of science. In particular, it has suggested reconsidering basic concepts such as the existence of a world that is, at least to some extent, independent of the observer, the possibility of getting reliable and objective knowledge about it, and the possibility of taking (under appropriate circumstances) certain properties to be objectively possessed by physical systems. It has also raised many others questions which are well known to those involved (...) |
|
Fifty years after the publication of Bell's theorem, there remains some controversy regarding what the theorem is telling us about quantum mechanics, and what the experimental violations of Bell inequalities are telling us about the world. This chapter represents my best attempt to be clear about what I think the lessons are. In brief: there is some sort of nonlocality inherent in any quantum theory, and, moreover, in any theory that reproduces, even approximately, the quantum probabilities for the outcomes of (...) |
|
I discuss the interpretation of spontaneous collapse theories, with particular reference to Bell's suggestion that the stochastic jumps in the evolution of the wave function should be considered as local beables of the theory. I develop this analogy in some detail for the case of non-relativistic GRW-type theories, using a generalisation of Bell's notion of beables to POV measures. In the context of CSL-type theories, this strategy appears to fail, and I discuss instead Ghirardi and co-workers' mass-density interpretation and its (...) |