Switch to: References

Add citations

You must login to add citations.
  1. Twist Structures and Nelson Conuclei.Manuela Busaniche, Nikolaos Galatos & Miguel Andrés Marcos - 2022 - Studia Logica 110 (4):949-987.
    Motivated by Kalman residuated lattices, Nelson residuated lattices and Nelson paraconsistent residuated lattices, we provide a natural common generalization of them. Nelson conucleus algebras unify these examples and further extend them to the non-commutative setting. We study their structure, establish a representation theorem for them in terms of twist structures and conuclei that results in a categorical adjunction, and explore situations where the representation is actually an isomorphism. In the latter case, the adjunction is elevated to a categorical equivalence. By (...)
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Nelson’s Logic ????Thiago Nascimento, Umberto Rivieccio, João Marcos & Matthew Spinks - 2020 - Logic Journal of the IGPL 28 (6):1182-1206.
    Besides the better-known Nelson logic and paraconsistent Nelson logic, in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\mathcal{S}$. The logic $\mathcal{S}$ was originally presented by means of a calculus with infinitely many rule schemata and no semantics. We look here at the propositional fragment of $\mathcal{S}$, showing that it is algebraizable, in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known algebraic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Some Categories of Involutive Centered Residuated Lattices.J. L. Castiglioni, M. Menni & M. Sagastume - 2008 - Studia Logica 90 (1):93-124.
    Motivated by an old construction due to J. Kalman that relates distributive lattices and centered Kleene algebras we define the functor K • relating integral residuated lattices with 0 with certain involutive residuated lattices. Our work is also based on the results obtained by Cignoli about an adjunction between Heyting and Nelson algebras, which is an enrichment of the basic adjunction between lattices and Kleene algebras. The lifting of the functor to the category of residuated lattices leads us to study (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Conserving Involution in Residuated Structures.Ai-ni Hsieh & James G. Raftery - 2007 - Mathematical Logic Quarterly 53 (6):583-609.
    This paper establishes several algebraic embedding theorems, each of which asserts that a certain kind of residuated structure can be embedded into a richer one. In almost all cases, the original structure has a compatible involution, which must be preserved by the embedding. The results, in conjunction with previous findings, yield separative axiomatizations of the deducibility relations of various substructural formal systems having double negation and contraposition axioms. The separation theorems go somewhat further than earlier ones in the literature, which (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structural Completeness in Substructural Logics.J. S. Olson, J. G. Raftery & C. J. Van Alten - 2008 - Logic Journal of the IGPL 16 (5):453-495.
    Hereditary structural completeness is established for a range of substructural logics, mainly without the weakening rule, including fragments of various relevant or many-valued logics. Also, structural completeness is disproved for a range of systems, settling some previously open questions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • O expressivismo lógico de Aristóteles segundo Lucas Angioni: um breve e introdutório quadro teórico.Aislan Fernandes Pereira - 2017 - Books of Abstracts (3rd FILOMENA Workshop).
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Nikolaos Galatos.Hiroakira Ono - 2006 - Studia Logica 83 (1-3):1-32.
    No categories
     
    Export citation  
     
    Bookmark  
  • Implicational (Semilinear) Logics I: A New Hierarchy. [REVIEW]Petr Cintula & Carles Noguera - 2010 - Archive for Mathematical Logic 49 (4):417-446.
    In abstract algebraic logic, the general study of propositional non-classical logics has been traditionally based on the abstraction of the Lindenbaum-Tarski process. In this process one considers the Leibniz relation of indiscernible formulae. Such approach has resulted in a classification of logics partly based on generalizations of equivalence connectives: the Leibniz hierarchy. This paper performs an analogous abstract study of non-classical logics based on the kind of generalized implication connectives they possess. It yields a new classification of logics expanding Leibniz (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Logic Ł•.Marta S. Sagastume & Hernán J. San Martín - 2014 - Mathematical Logic Quarterly 60 (6):375-388.
  • Formal Systems of Fuzzy Logic and Their Fragments.Petr Cintula, Petr Hájek & Rostislav Horčík - 2007 - Annals of Pure and Applied Logic 150 (1-3):40-65.
    Formal systems of fuzzy logic are well-established logical systems and respected members of the broad family of the so-called substructural logics closely related to the famous logic BCK. The study of fragments of logical systems is an important issue of research in any class of non-classical logics. Here we study the fragments of nine prominent fuzzy logics to all sublanguages containing implication. However, the results achieved in the paper for those nine logics are usually corollaries of theorems with much wider (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Remarks on an Algebraic Semantics for Paraconsistent Nelson's Logic.Manuela Busaniche & Roberto Cignoli - 2011 - Manuscrito 34 (1):99-114.
    In the paper Busaniche and Cignoli we presented a quasivariety of commutative residuated lattices, called NPc-lattices, that serves as an algebraic semantics for paraconsistent Nelson’s logic. In the present paper we show that NPc-lattices form a subvariety of the variety of commutative residuated lattices, we study congruences of NPc-lattices and some subvarieties of NPc-lattices.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fragments of R-Mingle.W. J. Blok & J. G. Raftery - 2004 - Studia Logica 78 (1-2):59-106.
    The logic RM and its basic fragments (always with implication) are considered here as entire consequence relations, rather than as sets of theorems. A new observation made here is that the disjunction of RM is definable in terms of its other positive propositional connectives, unlike that of R. The basic fragments of RM therefore fall naturally into two classes, according to whether disjunction is or is not definable. In the equivalent quasivariety semantics of these fragments, which consist of subreducts of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics Over FL.Nikolaos Galatos & Hiroakira Ono - 2006 - Studia Logica 83 (1-3):279-308.
    Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation properties and explain how they imply the amalgamation property for certain varieties of residuated lattices.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Minimal Varieties of Involutive Residuated Lattices.Constantine Tsinakis & Annika M. Wille - 2006 - Studia Logica 83 (1-3):407-423.
    We establish the existence uncountably many atoms in the subvariety lattice of the variety of involutive residuated lattices. The proof utilizes a construction used in the proof of the corresponding result for residuated lattices and is based on the fact that every residuated lattice with greatest element can be associated in a canonical way with an involutive residuated lattice.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Distributive Full Lambek Calculus Has the Finite Model Property.Michał Kozak - 2009 - Studia Logica 91 (2):201-216.
    We prove the Finite Model Property (FMP) for Distributive Full Lambek Calculus ( DFL ) whose algebraic semantics is the class of distributive residuated lattices ( DRL ). The problem was left open in [8, 5]. We use the method of nuclei and quasi–embedding in the style of [10, 1].
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Algebraic Proof Theory for Substructural Logics: Cut-Elimination and Completions.Agata Ciabattoni, Nikolaos Galatos & Kazushige Terui - 2012 - Annals of Pure and Applied Logic 163 (3):266-290.
  • Modal Twist-Structures Over Residuated Lattices.H. Ono & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (3):440-457.
  • Generalized Ordinal Sums and Translations.Nikolaos Galatos - 2011 - Logic Journal of the IGPL 19 (3):455-466.
    We extend the lattice embedding of the axiomatic extensions of the positive fragment of intuitionistic logic into the axiomatic extensions of intuitionistic logic to the setting of substructural logics. Our approach is algebraic and uses residuated lattices, the algebraic models for substructural logics. We generalize the notion of the ordinal sum of two residuated lattices and use it to obtain embeddings between subvariety lattices of certain residuated lattice varieties. As a special case we obtain the above mentioned embedding of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark