Switch to: References

Add citations

You must login to add citations.
  1. Canonical Truth.Merlin Carl & Philipp Schlicht - forthcoming - Axiomathes:1-19.
    We introduce and study some variants of a notion of canonical set theoretical truth. By this, we mean truth in a transitive proper class model M of ZFC that is uniquely characterized by some $$\in$$ ∈ -formula. We show that there are interesting statements that hold in all such models, but do not follow from ZFC, such as the ground model axiom and the nonexistence of measurable cardinals. We also study a related concept in which we only require M to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Modal Pluralism and Higher-Order Logic.Justin Clarke-Doane & William McCarthy - forthcoming - Philosophical Perspectives.
    In this article, we discuss a simple argument that modal metaphysics is misconceived, and responses to it. Unlike Quine’s, this argument begins with the banal observation that there are different candidate interpretations of the predicate ‘could have been the case’. This is analogous to the observation that there are different candidate interpretations of the predicate ‘is a member of’. The argument then infers that the search for metaphysical necessities is misguided in much the way the ‘set-theoretic pluralist’ (Clarke-Doane & Hamkins (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Choice Principles in Local Mantles.Farmer Schlutzenberg - 2022 - Mathematical Logic Quarterly 68 (3):264-278.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Inner-Model Reflection Principles.Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins, Jonas Reitz & Ralf Schindler - 2020 - Studia Logica 108 (3):573-595.
    We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width (...)
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Superstrong and Other Large Cardinals Are Never Laver Indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Modal Logic of Set-Theoretic Potentialism and the Potentialist Maximality Principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Set-Theoretic Blockchains.Miha E. Habič, Joel David Hamkins, Lukas Daniel Klausner, Jonathan Verner & Kameryn J. Williams - 2019 - Archive for Mathematical Logic 58 (7-8):965-997.
    Given a countable model of set theory, we study the structure of its generic multiverse, the collection of its forcing extensions and ground models, ordered by inclusion. Mostowski showed that any finite poset embeds into the generic multiverse while preserving the nonexistence of upper bounds. We obtain several improvements of his result, using what we call the blockchain construction to build generic objects with varying degrees of mutual genericity. The method accommodates certain infinite posets, and we can realize these embeddings (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algebraicity and Implicit Definability in Set Theory.Joel David Hamkins & Cole Leahy - 2016 - Notre Dame Journal of Formal Logic 57 (3):431-439.
    We analyze the effect of replacing several natural uses of definability in set theory by the weaker model-theoretic notion of algebraicity. We find, for example, that the class of hereditarily ordinal algebraic sets is the same as the class of hereditarily ordinal definable sets; that is, $\mathrm{HOA}=\mathrm{HOD}$. Moreover, we show that every algebraic model of $\mathrm{ZF}$ is actually pointwise definable. Finally, we consider the implicitly constructible universe Imp—an algebraic analogue of the constructible universe—which is obtained by iteratively adding not only (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bi-Interpretation in Weak Set Theories.Alfredo Roque Freire & Joel David Hamkins - 2021 - Journal of Symbolic Logic 86 (2):609-634.
    In contrast to the robust mutual interpretability phenomenon in set theory, Ali Enayat proved that bi-interpretation is absent: distinct theories extending ZF are never bi-interpretable and models of ZF are bi-interpretable only when they are isomorphic. Nevertheless, for natural weaker set theories, we prove, including Zermelo–Fraenkel set theory $\mathrm {ZFC}^{-}$ without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of $\mathrm {ZFC}^{-}$ that are bi-interpretable, but not isomorphic—even $\langle H_{\omega _1},\in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Universism and Extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - forthcoming - Review of Symbolic Logic:1-50.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is the Dream Solution of the Continuum Hypothesis Attainable?Joel David Hamkins - 2015 - Notre Dame Journal of Formal Logic 56 (1):135-145.
    The dream solution of the continuum hypothesis would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to $\mathrm {CH}$ is unattainable.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Inner Mantles and Iterated HOD.Jonas Reitz & Kameryn J. Williams - 2019 - Mathematical Logic Quarterly 65 (4):498-510.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Grounded Martin's Axiom.Miha E. Habič - 2017 - Mathematical Logic Quarterly 63 (5):437-453.
    We introduce a variant of Martin's axiom, called the grounded Martin's axiom, or math formula, which asserts that the universe is a c.c.c. forcing extension in which Martin's axiom holds for posets in the ground model. This principle already implies several of the combinatorial consequences of math formula. The new axiom is shown to be consistent with the failure of math formula and a singular continuum. We prove that math formula is preserved in a strong way when adding a Cohen (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The Downward Directed Grounds Hypothesis and Very Large Cardinals.Toshimichi Usuba - 2017 - Journal of Mathematical Logic 17 (2):1750009.
    A transitive model M of ZFC is called a ground if the universe V is a set forcing extension of M. We show that the grounds ofV are downward set-directed. Consequently, we establish some fundamental theorems on the forcing method and the set-theoretic geology. For instance, the mantle, the intersection of all grounds, must be a model of ZFC. V has only set many grounds if and only if the mantle is a ground. We also show that if the universe (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Logics of Intuitionistic Kripke-Platek Set Theory.Rosalie Iemhoff & Robert Passmann - 2021 - Annals of Pure and Applied Logic 172 (10):103014.
    We investigate the logical structure of intuitionistic Kripke-Platek set theory , and show that the first-order logic of is intuitionistic first-order logic IQC.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Subcomplete Forcing Principles and Definable Well-Orders.Gunter Fuchs - 2018 - Mathematical Logic Quarterly 64 (6):487-504.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In Inner Models with Woodin Cardinals.Sandra Müller & Grigor Sargsyan - 2021 - Journal of Symbolic Logic 86 (3):871-896.
    We analyze the hereditarily ordinal definable sets $\operatorname {HOD} $ in $M_n[g]$ for a Turing cone of reals x, where $M_n$ is the canonical inner model with n Woodin cardinals build over x and g is generic over $M_n$ for the Lévy collapse up to its bottom inaccessible cardinal. We prove that assuming $\boldsymbol \Pi ^1_{n+2}$ -determinacy, for a Turing cone of reals x, $\operatorname {HOD} ^{M_n[g]} = M_n,$ where $\mathcal {M}_{\infty }$ is a direct limit of iterates of $M_{n+1}$, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Infinite Forcing and the Generic Multiverse.Giorgio Venturi - 2020 - Studia Logica 108 (2):277-290.
    In this article we present a technique for selecting models of set theory that are complete in a model-theoretic sense. Specifically, we will apply Robinson infinite forcing to the collections of models of ZFC obtained by Cohen forcing. This technique will be used to suggest a unified perspective on generic absoluteness principles.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Extendible Cardinals and the Mantle.Toshimichi Usuba - 2019 - Archive for Mathematical Logic 58 (1-2):71-75.
    The mantle is the intersection of all ground models of V. We show that if there exists an extendible cardinal then the mantle is the smallest ground model of V.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Reconstruction of Steel’s Multiverse Project.Penelope Maddy & Toby Meadows - 2020 - Bulletin of Symbolic Logic 26 (2):118-169.
    This paper reconstructs Steel’s multiverse project in his ‘Gödel’s program’ (Steel [2014]), first by comparing it to those of Hamkins [2012] and Woodin [2011], then by detailed analysis what’s presented in Steel’s brief text. In particular, we reconstruct his notion of a ‘natural’ theory, describe his multiverse axioms and his translation function, and assess the resulting status of the Continuum Hypothesis. In the end, we reconceptualize the defect that Steel thinks CH might suffer from and isolate what it would take (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a Class of Maximality Principles.Daisuke Ikegami & Nam Trang - 2018 - Archive for Mathematical Logic 57 (5-6):713-725.
    We study various classes of maximality principles, \\), introduced by Hamkins :527–550, 2003), where \ defines a class of forcing posets and \ is an infinite cardinal. We explore the consistency strength and the relationship of \\) with various forcing axioms when \. In particular, we give a characterization of bounded forcing axioms for a class of forcings \ in terms of maximality principles MP\\) for \ formulas. A significant part of the paper is devoted to studying the principle MP\\) (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Long Extender Algebra.Ralf Schindler - 2018 - Archive for Mathematical Logic 57 (1-2):73-82.
    Generalizing Woodin’s extender algebra, cf. e.g. Steel Handbook of set theory, Springer, Berlin, 2010), we isolate the long extender algebra as a general version of Bukowský’s forcing, cf. Bukovský, in the presence of a supercompact cardinal.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Inner Model Theoretic Geology.Gunter Fuchs & Ralf Schindler - 2016 - Journal of Symbolic Logic 81 (3):972-996.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varsovian Models I.Grigor Sargsyan & Ralf Schindler - 2018 - Journal of Symbolic Logic 83 (2):496-528.
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • Hod, V and the Gch.Mohammad Golshani - 2017 - Journal of Symbolic Logic 82 (1):224-246.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark