Citations of:
Add citations
You must login to add citations.
|
|
Metaphors are found all throughout science: in published papers, working hypotheses, policy documents, lecture slides, grant proposals, and press releases. They serve different functions, but perhaps most striking is the way they enable understanding, of a theory, phenomenon, or idea. In this paper, we leverage recent advances on the nature of metaphor and the nature of understanding to explore how they accomplish this feat. We attempt to shift the focus away from the epistemic value of the content of metaphors, to (...) |
|
This paper presents an artifactual approach to models that also addresses their fictional features. It discusses first the imaginary accounts of models and fiction that set model descriptions apart from imagined-objects, concentrating on the latter :251–268, 2010; Frigg and Nguyen in The Monist 99:225–242, 2016; Godfrey-Smith in Biol Philos 21:725–740, 2006; Philos Stud 143:101–116, 2009). While the imaginary approaches accommodate surrogative reasoning as an important characteristic of scientific modeling, they simultaneously raise difficult questions concerning how the imagined entities are related (...) |
|
While many recent accounts of scientific representation have given a central role to the agency and intentions of scientists in explaining representation, they have left these agential concepts unanalyzed. An account of scientific, representational actions will be a useful piece in offering a more complete account of the practice of representation in science. Drawing on an Anscombean approach to the nature of intentional actions, the Means-End Account of Scientific, Representational Actions describes three features of scientific, representational actions: the final description (...) |
|
Many scientific models are representations. Building on Goodman and Elgin’s notion of representation-as we analyse what this claim involves by providing a general definition of what makes something a scientific model, and formulating a novel account of how they represent. We call the result the DEKI account of representation, which offers a complex kind of representation involving an interplay of, denotation, exemplification, keying up of properties, and imputation. Throughout we focus on material models, and we illustrate our claims with the (...) No categories |
|
We argue that the main results of scientific papers may appropriately be published even if they are false, unjustified, and not believed to be true or justified by their author. To defend this claim we draw upon the literature studying the norms of assertion, and consider how they would apply if one attempted to hold claims made in scientific papers to their strictures, as assertions and discovery claims in scientific papers seem naturally analogous. We first use a case study of (...) |
|
Science provides us with representations of atoms, elementary particles, polymers, populations, genetic trees, economies, rational decisions, aeroplanes, earthquakes, forest fires, irrigation systems, and the world’s climate. It's through these representations that we learn about the world. This entry explores various different accounts of scientific representation, with a particular focus on how scientific models represent their target systems. As philosophers of science are increasingly acknowledging the importance, if not the primacy, of scientific models as representational units of science, it's important to (...) |
|
According to a widely held view, scientific modelling consists in entertaining a set of model descriptions that specify a model. Rather than studying the phenomenon of interest directly, scientists investigate the phenomenon indirectly via a model in the hope of learning about some of the phenomenon’s features. I call this view the description-driven modelling (DDM) account. I argue that although an accurate description of much of scientific research, the DDM account is found wanting as regards the mechanistic modelling found in (...) |
|
Different why-questions emerge under different contexts and require different information in order to be addressed. Hence a relevance relation can hardly be invariant across contexts. However, what is indeed common under any possible context is that all explananda require scientific information in order to be explained. So no scientific information is in principle explanatorily irrelevant, it only becomes so under certain contexts. In view of this, scientific thought experiments can offer explanations, should we analyze their representational strategies. Their representations involve (...) |
|
Modelos representacionais são usados na prática científica para representar diferentes fenômenos. O propósito deste trabalho é examinar o uso de autômatos celulares para representar fenômenos emergentes, isto é, fenômenos com aspectos globais que não podem ser preditos apenas a partir de seus aspectos locais, procurando entender como se dá a representação nesse processo de modelagem. Uma abordagem sugerida é a acepção DEKI desenvolvida por Roman Frigg e James Nguyen, no qual o processo de representação envolve quatro aspectos: denotação do sistema-alvo (...) No categories |
|
The epistemic value of models has traditionally been approached from a representational perspective. This paper argues that the artifactual approach evades the problem of accounting for representation and better accommodates the modal dimension of modeling. From an artifactual perspective, models are viewed as erotetic vehicles constrained by their construction and available representational tools. The modal dimension of modeling is approached through two case studies. The first portrays mathematical modeling in economics, while the other discusses the modeling practice of synthetic biology, (...) |
|
While discussions of the imagination have been limited in philosophy of science, this is beginning to change. In recent years, a vast literature on imagination in science has emerged. This paper surveys the current field, including the changing attitudes towards the scientific imagination, the fiction view of models, how the imagination can lead to knowledge and understanding, and the value of different types of imagination. It ends with a discussion of the gaps in the current literature, indicating avenues for future (...) |
|
Idealization is commonly understood as distortion: representing things differently than how they actually are. In this paper, we outline an alternative artifactual approach that does not make misrepresentation central for the analysis of idealization. We examine the contrast between the Hodgkin-Huxley (1952a, b, c) and the Heimburg-Jackson (2005, 2006) models of the nerve impulse from the artifactual perspective, and argue that, since the two models draw upon different epistemic resources and research programs, it is often difficult to tell which features (...) |
|
Previously, I (Boesch 2017) described a notion called “representational licensing”—the set of activities of scientific practice by which scientists establish the intended representational use of a vehicle. In this essay, I expand and develop this concept of representational licensing. I begin by showing how the concept is of value for both pragmatic and substantive approaches to scientific representation. Then, through the examination of a case study of the Mississippi River Basin Model, I point out and explain some of the activities (...) |
|
|
|
I analyze the exploratory function of two main modeling practices: targetless fictional models and hypothetical perspectival models. In both cases, I argue, modelers invite us to imagine or conceive something about the target system, which is known to be either nonexistent or just hypothetical. I clarify the kind of imagining or conceiving involved in each modeling practice, and I show how each—in its own right—delivers important modal knowledge. I illustrate these two kinds of exploratory models with Maxwell’s ether model and (...) |
|
I argue that the appropriateness of an assertion is sensitive to context—or, really, the “common ground”—in a way that hasn’t previously been emphasized by philosophers. This kind of context-sensitivity explains why some scientific conclusions seem to be appropriately asserted even though they are not known, believed, or justified on the available evidence. I then consider other recent attempts to account for this phenomenon and argue that if they are to be successful, they need to recognize the kind of context-sensitivity that (...) |
|
Thought experiments (TEs) are important tools in science, used to both undermine and support theories, and communicate and explain complex phenomena. Their interest within philosophy of science has been dominated by a narrow question: How do TEs increase knowledge? My aim is to push beyond this to consider their broader value in scientific practice. I do this through an investigation into the scientific imagination. Part one explores questions regarding TEs as “experiments in the imagination” via a debate concerning the epistemic (...) |
|
No categories |
|
There is a vast literature within philosophy of mind that focuses on artificial intelligence, but hardly mentions methodological questions. There is also a growing body of work in philosophy of science about modeling methodology that hardly mentions examples from cognitive science. Here these discussions are connected. Insights developed in the philosophy of science literature about the importance of idealization provide a way of understanding the neural implausibility of connectionist networks. Insights from neurocognitive science illuminate how relevant similarities between models and (...) |
|
The goal of this article is to address the problem of inconsistent models and the challenge it poses for perspectivism. I analyze the argument, draw attention to some hidden premises behind it, and deflate them. Then I introduce the notion of perspectival models as a distinctive class of modeling practices whose primary function is exploratory. I illustrate perspectival modeling with two examples taken from contemporary high-energy physics at the Large Hadron Collider at the European Organization for Nuclear Research, which are (...) |
|
Highly idealized models may serve various epistemic functions, notably explanation, in virtue of representing the world. Inferentialism provides a prima facie compelling characterization of what constitutes the representation relation. In this paper, I argue that what I call factive inferentialism does not provide a satisfactory solution to the puzzle of model-based—factive—explanation. In particular, I show that making explanatory counterfactual inferences is not a sufficient guide for accurate representation, factivity, or realism. I conclude by calling for a more explicit specification of (...) |
|
This paper discusses modeling from the artifactual perspective. The artifactual approach conceives models as erotetic devices. They are purpose-built systems of dependencies that are constrained in view of answering a pending scientific question, motivated by theoretical or empirical considerations. In treating models as artifacts, the artifactual approach is able to address the various languages of sciences that are overlooked by the traditional accounts that concentrate on the relationship of representation in an abstract and general manner. In contrast, the artifactual approach (...) |
|
No categories |
|
Scientific models consist of fictitious elements and assumptions. Various attempts have been made to answer the question of how a model, which is sometimes viewed as a fiction, can explain or predict the target phenomenon adequately. I examine two accounts of models-as-fictions which are aiming at disentangling the myth of representing the reality by fictional models. I argue that both views have their own weaknesses in spite of many virtues. I propose to re-evaluate the problems of representation from a novel (...) |
|
Free Energy Principle underlies a unifying framework that integrates theories of origins of life, cognition, and action. Recently, FEP has been developed into a Markovian monist perspective. The paper expresses scepticism about the validity of arguments for Markovian monism. The critique is based on the assumption that Markovian models are scientific models, and while we may defend ontological theories about the nature of scientific models, we could not read off metaphysical theses about the nature of target systems from our theories (...) No categories |
|
Brief overview of the debates held in the workshop on scientific representation, in Prague, May 2018. |
|
Agent-based accounts of scientific representation all agree that the representational relationship is constituted by the actions of scientists. Despite this agreement, there are several differences in how agent-based accounts describe scientific representation. In this essay, I argue that these differences do not undercut the compatibility between the accounts. I make my argument by examining the nature of human agency and demonstrating that scientific, representational actions are multiply describable. I then argue that the differences between the accounts are valuable because they (...) |
|
While many recent accounts of scientific representation have given a central role to the agency and intentions of scientists in explaining representation, they have left these agential concepts unanalyzed. An account of scientific, representational actions will be a useful piece in offering a more complete account of the practice of representation in science. Drawing on an Anscombean approach to the nature of intentional actions, the Means-End Account of Scientific, Representational Actions describes three features of scientific, representational actions: the final description (...) |
|
Inferentialists about scientific representation hold that an apparatus’s representing a target system consists in the apparatus allowing “surrogative inferences” about the target. I argue that a serious problem for inferentialism arises from the fact that many scientific theories and models contain internal inconsistencies. Inferentialism, left unamended, implies that inconsistent scientific models have unlimited representational power, since an inconsistency permits any conclusion to be inferred. I consider a number of ways that inferentialists can respond to this challenge before suggesting my own (...) |
|
The main purpose of this dissertation is to examine critically and discuss the role of imagination in science and religion, with particular emphasis on its possible epistemic, creative, and meaning-making functions. In order to answer my research questions, I apply theories and concepts from contemporary philosophy of mind on scientific and religious practices. This framework allows me to explore the mental state of imagination, not as an isolated phenomenon but, rather, as one of many mental states that co-exist and interplay (...) |
|
In this essay, I examine the role of dissimilarity in scientific representation. After briefly reviewing some of the philosophical literature which places a strong emphasis on the role of similarity, I turn to examine some work from Carroll and Borges which demonstrates that perfect similarity is not valuable in the representational use of maps. Expanding on this insight, I go on to argue that this shows that dissimilarity is an important part of the representational use of maps—a point I then (...) |
|
Veritism, the position that truth is necessary for epistemic acceptability, seems to be in tension with the observation that much of our best science is not, strictly speaking, true when interpreted literally. This generates a paradox: truth is necessary for epistemic acceptability; the claims of science have to be taken literally; much of what science produces is not literally true and yet it is acceptable. We frame Elgin’s project in True Enough as being motivated by, and offering a particular resolution (...) No categories |
|
Climatologists have recently introduced a distinction between projections as scenario-based model results on the one hand and predictions on the other hand. The interpretation and usage of both terms is, however, not univocal. It is stated that the ambiguities of the interpretations may cause problems in the communication of climate science within the scientific community and to the public realm. This paper suggests an account of scenarios as props in games of make-belive. With this account, we explain the difference between (...) |
|
In this paper, we explore an under-investigated question concerning the class of formal models that aim at providing normative guidance. We call such models normative models. In particular, we examine the question of how normative models can successfully exert normative guidance. First, we highlight the absence of a discussion of this question – which is surprising given the extensive debate about the success conditions of descriptive models – and motivate its importance. Second, we introduce and discuss two potential accounts of (...) |
|
How do scientific models represent in a way that enables us to discover new truths about reality and draw inferences about it? Contemporary accounts of scientific discovery answer this question by focusing on the cognitive mechanisms involved in the generation of new ideas and concepts in terms of a special sort of reasoning—or model-based reasoning—involving imagery. Alternatively, I argue that answering this question requires that we recognise the crucial role of the propositional imagination in the construction and development of models (...) |
|
Drawing on ‘interpretational’ accounts of scientific representation, I argue that the use of so-called ‘toy models’ provides no particular philosophical puzzle. More specifically; I argue that once one gives up the idea that models are accurate representations of their targets only if they are appropriately similar, then simple and highly idealized models can be accurate in the same way that more complex models can be. Their differences turn on trading precision for generality, but, if they are appropriately interpreted, toy models (...) |
|
How do models represent reality? There are two conditions that scientific models must satisfy to be representations of real systems, the aboutness condition and the epistemic condition. In this article, I critically assess the two main fictionalist theories of models as representations, the indirect fiction view and the direct fiction view, with respect to these conditions. And I develop a novel proposal, what I call ‘the new fiction view of models’. On this view, models are akin to fictional stories; they (...) |
|
No categories |
|
The recent discussion of fictional models has focused on imagination, implicitly considering fictions as something nonconcrete. We present two cases from synthetic biology that can be viewed as concrete fictions. Both minimal cells and alternative genetic systems are modal in nature: they, as well as their abstract cousins, can be used to study unactualized possibilia. We approach these synthetic constructs through Vaihinger’s notion of a semi-fiction and Goodman’s notion of semifactuality. Our study highlights the relative existence of such concrete fictions. (...) |
|
This paper presents and argues for an account of objectual understanding that aims to do justice to the full range of cases of scientific understanding, including cases in which one does not have an explanation of the understood phenomenon. According to the proposed account, one understands a phenomenon just in case one grasps a sufficiently accurate and comprehensive model of the ways in which it or its features are situated within a network of dependence relations; one’s degree of understanding is (...) |
|
Following an analysis of the state of investigations and clinical outcomes in the Alzheimer's research field, I argue that the widely-accepted 'amyloid cascade' mechanistic explanation of Alzheimer's disease appears to be fundamentally incomplete. In this context, I propose that a framework termed 'principled mechanism' (PM) can help with remedying this problem. First, using a series of five 'tests', PM systematically compares different components of a given mechanistic explanation against a paradigmatic set of criteria, and hints at various ways of making (...) |
|
I argue that fictional models, construed as models that misrepresent certain ontological aspects of their target systems, can nevertheless explain why the latter exhibit certain behaviour. They can do this by accurately representing whatever it is that that behaviour counterfactually depends on. However, we should be sufficiently sensitive to different explanatory questions, i.e., ‘why does certain behaviour occur?’ versus ‘why does the counterfactual dependency invoked to answer that question actually hold?’. With this distinction in mind, I argue that whilst fictional (...) No categories |
|
In recent decades, philosophers of science have devoted considerable efforts to understand what models represent. One popular position is that models represent fictional situations. Another position states that, though models often involve fictional elements, they represent real objects or scenarios. Though these two positions may seem to be incompatible, I believe it is possible to reconcile them. Using a threefold distinction between different signs proposed by Peirce, I develop an argument based on a proposal recently made by Kralemann and Lattman (...) |
|
|
|
To understand something involves some sort of commitment to a set of propositions comprising an account of the understood phenomenon. Some take this commitment to be a species of belief; others, such as Elgin and I, take it to be a kind of cognitive policy. This paper takes a step back from debates about the nature of understanding and asks when this commitment involved in understanding is epistemically appropriate, or ‘acceptable’ in Elgin’s terminology. In particular, appealing to lessons from the (...) |
|
It is plausible to think that, in order to actively employ models in their inquiries, scientists should be aware of their existence. The question is especially puzzling for realists in the case of abstract models, since it is not obvious how this is possible. Interestingly, though, this question has drawn little attention in the relevant literature. Perhaps the most obvious choice for a realist is appealing to intuition. In this paper, I argue that if scientific models were abstract entities, one (...) |
|
The purpose of this article is to develop an epistemology of scientific models in scientific research practices, and to show that disciplinary perspectives have crucial role in such an epistemology. A transcendental approach is taken, aimed at explanations of the kinds of questions relevant to the intended epistemology, such as “How is it possible that models provide knowledge about aspects of reality?” The approach is also pragmatic in the sense that the questions and explanations must be adequate and relevant to (...) |
|
|
|
Many accounts of scientific modeling conceive of models as fictions: scientists interact with models in ways analogous to various aesthetic objects. Fictionalists follow most other accounts of modeling by taking them to be revelatory of the actual world in virtue of bearing some resemblance relation to a target system. While such fictionalist accounts capture crucial aspects of modelling practice, they are ill-suited to some design and engineering contexts. Here, models sometimes serve to underwrite design projects whereby real-world targets are constructed. (...) No categories |