Switch to: References

Add citations

You must login to add citations.
  1. A Local-Realistic Model of Quantum Mechanics Based on a Discrete Spacetime.Antonio Sciarretta - 2018 - Foundations of Physics 48 (1):60-91.
    This paper presents a realistic, stochastic, and local model that reproduces nonrelativistic quantum mechanics results without using its mathematical formulation. The proposed model only uses integer-valued quantities and operations on probabilities, in particular assuming a discrete spacetime under the form of a Euclidean lattice. Individual particle trajectories are described as random walks. Transition probabilities are simple functions of a few quantities that are either randomly associated to the particles during their preparation, or stored in the lattice nodes they visit during (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Interfering Quantum Trajectories Without Which-Way Information.Kiran Mathew & Moncy V. John - 2017 - Foundations of Physics 47 (7):873-886.
    Quantum trajectory-based descriptions of interference between two coherent stationary waves in a double-slit experiment are presented, as given by the de Broglie–Bohm and modified de Broglie–Bohm formulations of quantum mechanics. In the dBB trajectory representation, interference between two spreading wave packets can be shown also as resulting from motion of particles. But a trajectory explanation for interference between stationary states is so far not available in this scheme. We show that both the dBB and MdBB trajectories are capable of producing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neutrino Oscillations with Nil Mass.Edward R. Floyd - 2017 - Foundations of Physics 47 (1):42-60.
    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton–Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and \ oscillations are examined.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Interference, Reduced Action, and Trajectories.Edward R. Floyd - 2007 - Foundations of Physics 37 (9):1386-1402.
    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the trajectories of the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function’s trajectory. The quantum effective (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations