Switch to: References

Add citations

You must login to add citations.
  1. Surreal Time and Ultratasks.Haidar Al-Dhalimy & Charles J. Geyer - 2016 - Review of Symbolic Logic 9 (4):836-847.
    This paper suggests that time could have a much richer mathematical structure than that of the real numbers. Clark & Read (1984) argue that a hypertask (uncountably many tasks done in a finite length of time) cannot be performed. Assuming that time takes values in the real numbers, we give a trivial proof of this. If we instead take the surreal numbers as a model of time, then not only are hypertasks possible but so is an ultratask (a sequence which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Varieties of Class-Theoretic Potentialism.Neil Barton & Kameryn J. Williams - 2024 - Review of Symbolic Logic 17 (1):272-304.
    We explain and explore class-theoretic potentialism—the view that one can always individuate more classes over a set-theoretic universe. We examine some motivations for class-theoretic potentialism, before proving some results concerning the relevant potentialist systems (in particular exhibiting failures of the $\mathsf {.2}$ and $\mathsf {.3}$ axioms). We then discuss the significance of these results for the different kinds of class-theoretic potentialists.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Internality, transfer, and infinitesimal modeling of infinite processes†.Emanuele Bottazzi & Mikhail G. Katz - forthcoming - Philosophia Mathematica.
    ABSTRACTA probability model is underdetermined when there is no rational reason to assign a particular infinitesimal value as the probability of single events. Pruss claims that hyperreal probabilities are underdetermined. The claim is based upon external hyperreal-valued measures. We show that internal hyperfinite measures are not underdetermined. The importance of internality stems from the fact that Robinson’s transfer principle only applies to internal entities. We also evaluate the claim that transferless ordered fields may have advantages over hyperreals in probabilistic modeling. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - 2021 - Philosophia Mathematica 29 (1):88-109.
    We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei–Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In Paper II we analyze two underdetermination theorems by Pruss and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Underdetermination of infinitesimal probabilities.Alexander R. Pruss - 2018 - Synthese 198 (1):777-799.
    A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek and Easwaran have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Vieri Benci and Mauro Di Nasso. How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers.Sylvia Wenmackers - 2022 - Philosophia Mathematica 30 (1):130-137.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Critical Studies/Book Reviews.Sylvia Wenmackers - forthcoming - Philosophia Mathematica.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Indefinite Divisibility.Jeffrey Sanford Russell - 2016 - Inquiry: An Interdisciplinary Journal of Philosophy 59 (3):239-263.
    Some hold that the lesson of Russell’s paradox and its relatives is that mathematical reality does not form a ‘definite totality’ but rather is ‘indefinitely extensible’. There can always be more sets than there ever are. I argue that certain contact puzzles are analogous to Russell’s paradox this way: they similarly motivate a vision of physical reality as iteratively generated. In this picture, the divisions of the continuum into smaller parts are ‘potential’ rather than ‘actual’. Besides the intrinsic interest of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quick and Easy Recipes for Hypergunk.Patrick Reeder - 2020 - Australasian Journal of Philosophy 98 (1):178-191.
    I argue for the possibility of hypergunk: that is, it is possible that there exists an x such that every part of x has a proper part and, for any set S of parts of x, there is a set S′ of parts of...
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Axiom of Canonicity.Jerzy Pogonowski - forthcoming - Logic and Logical Philosophy:1-29.
    The axiom of canonicity was introduced by the famous Polish logician Roman Suszko in 1951 as an explication of Skolem's Paradox and a precise representation of the axiom of restriction in set theory proposed much earlier by Abraham Fraenkel. We discuss the main features of Suszko's contribution and hint at its possible further applications.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinitesimals as an issue of neo-Kantian philosophy of science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. Our (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • An infinte natural sum.Paolo Lipparini - 2016 - Mathematical Logic Quarterly 62 (3):249-257.
    As far as algebraic properties are concerned, the usual addition on the class of ordinal numbers is not really well behaved; for example, it is not commutative, nor left cancellative etc. In a few cases, the natural Hessenberg sum is a better alternative, since it shares most of the usual properties of the addition on the naturals. A countably infinite iteration of the natural sum has been used in a recent paper by Väänänen and Wang, with applications to infinitary logics. (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • On What There is—Infinitesimals and the Nature of Numbers.Jens Erik Fenstad - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):57-79.
    This essay will be divided into three parts. In the first part, we discuss the case of infintesimals seen as a bridge between the discrete and the continuous. This leads in the second part to a discussion of the nature of numbers. In the last part, we follow up with some observations on the obvious applicability of mathematics.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Surreal ordered exponential fields.Philip Ehrlich & Elliot Kaplan - 2021 - Journal of Symbolic Logic 86 (3):1066-1115.
    In 2001, the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\mathbf {No}}$ of surreal numbers was brought to the fore by the first author and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\mathbf {No}}$, i.e. a subfield of ${\mathbf {No}}$ that is an initial subtree of ${\mathbf {No}}$. In this sequel, analogous results are established for ordered exponential fields, making use of a slight generalization of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Number systems with simplicity hierarchies: A generalization of conway’s theory of surreal numbers II.Philip Ehrlich & Elliot Kaplan - 2018 - Journal of Symbolic Logic 83 (2):617-633.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Essay in Honor of Adolf Grünbaum’s Ninetieth Birthday: A Reexamination of Zeno’s Paradox of Extension.Philip Ehrlich - 2014 - Philosophy of Science 81 (4):654-675.
    We suggest that, far from establishing an inconsistency in the standard theory of the geometrical linear continuum, Zeno’s Paradox of Extension merely establishes an inconsistency between the standard theory of geometrical magnitude and a misguided system of length measurement. We further suggest that our resolution of Zeno’s paradox is superior to Adolf Grünbaum’s now standard resolution based on Lebesgue measure theory.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Surreal Decisions.Eddy Keming Chen & Daniel Rubio - 2020 - Philosophy and Phenomenological Research 100 (1):54-74.
    Although expected utility theory has proven a fruitful and elegant theory in the finite realm, attempts to generalize it to infinite values have resulted in many paradoxes. In this paper, we argue that the use of John Conway's surreal numbers shall provide a firm mathematical foundation for transfinite decision theory. To that end, we prove a surreal representation theorem and show that our surreal decision theory respects dominance reasoning even in the case of infinite values. We then bring our theory (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals.Alexandre Borovik, Renling Jin & Mikhail G. Katz - 2012 - Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) and independently (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Oldest Paradoxes, Future Mathematics and Mysticism.Ulrich Blau - 2014 - Erkenntnis 79 (S7):1-25.
    A direct path that has been missed for 100 years leads from the oldest paradoxes straight to mysticism, via (the concept of) logical and mathematical truth, since the purely formal truth is an absolutely univocal, absolutely timeless and absolutely unbounded reference. I present three theses in passing: (1) logicians fail to fully appreciate the basic mathematical idea of truth and consequently push the semantic paradoxes aside. Otherwise they would have come to adopt the reflexive logic LR* right after Cantor (more (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transseries and Todorov–Vernaeve’s asymptotic fields.Matthias Aschenbrenner & Isaac Goldbring - 2014 - Archive for Mathematical Logic 53 (1-2):65-87.
    We study the relationship between fields of transseries and residue fields of convex subrings of non-standard extensions of the real numbers. This was motivated by a question of Todorov and Vernaeve, answered in this paper.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Measuring Intelligence and Growth Rate: Variations on Hibbard's Intelligence Measure.Samuel Alexander & Bill Hibbard - 2021 - Journal of Artificial General Intelligence 12 (1):1-25.
    In 2011, Hibbard suggested an intelligence measure for agents who compete in an adversarial sequence prediction game. We argue that Hibbard’s idea should actually be considered as two separate ideas: first, that the intelligence of such agents can be measured based on the growth rates of the runtimes of the competitors that they defeat; and second, one specific (somewhat arbitrary) method for measuring said growth rates. Whereas Hibbard’s intelligence measure is based on the latter growth-rate-measuring method, we survey other methods (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Galileo’s paradox and numerosities.Piotr Błaszczyk - 2021 - Philosophical Problems in Science 70:73-107.
    Galileo's paradox of infinity involves comparing the set of natural numbers, N, and the set of squares, {n2 : n ∈ N}. Galileo sets up a one-to-one correspondence between these sets; on this basis, the number of the elements of N is considered to be equal to the number of the elements of {n2 : n ∈ N}. It also characterizes the set of squares as smaller than the set of natural numbers, since ``there are many more numbers than squares". (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  • The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI.Samuel Allen Alexander - 2020 - Journal of Artificial General Intelligence 11 (1):70-85.
    After generalizing the Archimedean property of real numbers in such a way as to make it adaptable to non-numeric structures, we demonstrate that the real numbers cannot be used to accurately measure non-Archimedean structures. We argue that, since an agent with Artificial General Intelligence (AGI) should have no problem engaging in tasks that inherently involve non-Archimedean rewards, and since traditional reinforcement learning rewards are real numbers, therefore traditional reinforcement learning probably will not lead to AGI. We indicate two possible ways (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation