Switch to: References

Add citations

You must login to add citations.
  1. Relevant Features of Science: Values in Conservation Biology.Esther M. van Dijk - 2013 - Science & Education 22 (9):2141-2156.
  • Myint Swe Khine : Advances in Nature of Science Research: Concepts and Methodologies.Esther M. van Dijk - 2013 - Science & Education 22 (4):881-886.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Science and Society: The Case of Acceptance of Newtonian Optics in the Eighteenth Century.Cibelle Celestino Silva & Breno Arsioli Moura - 2012 - Science & Education 21 (9):1317-1335.
  • Recontextualization of Science from Lab to School: Implications for Science Literacy.Ajay Sharma & Charles W. Anderson - 2009 - Science & Education 18 (9):1253-1275.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lyotard, postmodernism and science education: A rejoinder to Zembylas.Roland M. Schulz - 2007 - Educational Philosophy and Theory 39 (6):633–656.
    Although postmodernist thought has become prominent in some educational circles, its influence on science education has until recently been rather minor. This paper examines the proposal of Michalinos Zembylas, published earlier in this journal, that Lyotardian postmodernism should be applied to science educational reform in order to achieve the much sought after positive transformation. As a preliminary to this examination several critical points are raised about Lyotard's philosophy of education and philosophy of science which serve to challenge and undermine Zembylas’ (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fundamental Issues Regarding the Nature of Technology.Jacob Pleasants, Michael P. Clough, Joanne K. Olson & Glen Miller - 2019 - Science & Education 28 (3-5):561-597.
    Science and technology are so intertwined that technoscience has been argued to more accurately reflect the progress of science and its impact on society, and most socioscientific issues require technoscientific reasoning. Education policy documents have long noted that the general public lacks sufficient understanding of science and technology necessary for informed decision-making regarding socioscientific/technological issues. The science–technology–society movement and scholarship addressing socioscientific issues in science education reflect efforts in the science education community to promote more informed decision-making regarding such issues. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • The “Species” Concept as a Gateway to Nature of Science.Jorun Nyléhn & Marianne Ødegaard - 2018 - Science & Education 27 (7-8):685-714.
    The nature of science is a primary goal in school science. Most teachers are not well-prepared for teaching NOS, but a sophisticated and in-depth understanding of NOS is necessary for effective teaching. Some authors emphasize the need for teaching NOS in context. Species, a central concept in biology, is proposed in this article as a concrete example of a means for achieving increased understanding of NOS. Although species are commonly presented in textbooks as fixed entities with a single definition, the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Progressive transitions in chemistry teachers’ understanding of nature of science based on historical controversies.Mansoor Niaz - 2009 - Science & Education 18 (1):43-65.
  • Interdisciplinary lessons for the teaching of biology from the practice of Evo-devo.Alan C. Love - 2013 - Science & Education 22 (2):255–278.
    Evolutionary developmental biology (Evo-devo) is a vibrant area of contemporary life science that should be (and is) increasingly incorporated into teaching curricula. Although the inclusion of this content is important for biological pedagogy at multiple levels of instruction, there are also philosophical lessons that can be drawn from the scientific practices found in Evo-devo. One feature of particular significance is the interdisciplinary nature of Evo-devo investigations and their resulting explanations. Instead of a single disciplinary approach being the most explanatory or (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Controversy as a Blind Spot in Teaching Nature of Science.Mario Kötter & Marcus Hammann - 2017 - Science & Education 26 (5):451-482.
    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines is characterized by controversy rather than unified textbook knowledge. There is common agreement among educators of the arts and humanities that controversies in the reference disciplines should be represented (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Down to Earth: History and philosophy of geoscience in practice for undergraduate education.Maarten G. Kleinhans - 2021 - European Journal for Philosophy of Science 11 (3):1-15.
    Undergraduate geoscience students are rarely exposed to history and philosophy of science. I will describe the experiences with a short course unfavourably placed in the first year of a bachelor of earth science. Arguments how HPS could enrich their education in many ways are sketched. One useful didactic approach is to develop a broader interest by connecting HPS themes to practical cases throughout the curriculum, and develop learning activities that allow students to reflect on their skills, methods and their field (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Family Resemblance Approach to the Nature of Science for Science Education.Gürol Irzık, Gurol Irzik & Robert Nola - 2011 - Science & Education 20 (7-8):591-607.
    Although there is universal consensus both in the science education literature and in the science standards documents to the effect that students should learn not only the content of science but also its nature, there is little agreement about what that nature is. This led many science educators to adopt what is sometimes called “the consensus view” about the nature of science (NOS), whose goal is to teach students only those characteristics of science on which there is wide consensus. This (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   93 citations  
  • Teachers’ Ways of Talking About Nature of Science and Its Teaching.Malin Ideland, Andreas Redfors, Lena Hansson & Lotta Leden - 2015 - Science & Education 24 (9-10):1141-1172.
    Nature of science has for a long time been regarded as a key component in science teaching. Much research has focused on students’ and teachers’ views of NOS, while less attention has been paid to teachers’ perspectives on NOS teaching. This article focuses on in-service science teachers’ ways of talking about NOS and NOS teaching, e.g. what they talk about as possible and valuable to address in the science classroom, in Swedish compulsory school. These teachers are, according to the national (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Implementing History and Philosophy in Science Teaching: Strategies, Methods, Results and Experiences from the European HIPST Project.Dietmar Höttecke, Andreas Henke & Falk Riess - 2012 - Science & Education 21 (9):1233-1261.
  • Exploring the Complexity of Students’ Scientific Explanations and Associated Nature of Science Views Within a Place-Based Socioscientific Issue Context.Benjamin C. Herman, David C. Owens, Robert T. Oertli, Laura A. Zangori & Mark H. Newton - 2019 - Science & Education 28 (3-5):329-366.
    In addition to considering sociocultural, political, economic, and ethical factors, effectively engaging socioscientific issues requires that students understand and apply scientific explanations and the nature of science. Promoting such understandings can be achieved through immersing students in authentic real-world contexts where the SSI impacts occur and teaching those students about how scientists comprehend, research, and debate those SSI. This triangulated mixed-methods investigation explored how 60 secondary students’ trophic cascade explanations changed through their experiencing place-based SSI instruction focused on the Yellowstone (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientism and Scientific Thinking.Renia Gasparatou - 2017 - Science & Education 26 (7-9):799-812.
    The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Two Views About Explicitly Teaching Nature of Science.Richard A. Duschl & Richard Grandy - 2013 - Science & Education 22 (9):2109-2139.
  • Reconceptualizing the Nature of Science for Science Education.Zoubeida R. Dagher & Sibel Erduran - 2016 - Science & Education 25 (1-2):147-164.
    Two fundamental questions about science are relevant for science educators: What is the nature of science? and what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school science. This conceptual article re-examines extant notions of nature of science and proposes an expanded version of the Family Resemblance Approach, originally developed by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   51 citations  
  • Teaching and assessing the nature of science: An introduction.Michael P. Clough & Joanne K. Olson - 2008 - Science & Education 17 (2-3):143-145.
  • From Science Studies to Scientific Literacy: A View from the Classroom.Douglas Allchin - 2014 - Science & Education 23 (9):1911-1932.
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Special Issue: Philosophical Considerations in the Teaching of Biology. Part II, Evolution, Development and Genetics.Kostas Kampourakis (ed.) - 2013 - Springer (Science & Education).
  • Perspectives of History and Philosophy on Teaching Astronomy.Horacio Tignanelli & Yann Benétreau-Dupin - 2014 - In Michael R. Matthews (ed.), International Handbook of Research in History, Philosophy and Science Teaching. Springer. pp. 603-640.
    The didactics of astronomy is a relatively young field with respect to that of other sciences. Historical issues have most often been part of the teaching of astronomy, although that often does not stem from a specific didactics. The teaching of astronomy is often subsumed under that of physics. One can easily consider that, from an educational standpoint, astronomy requires the same mathematical or physical strategies. This approach may be adequate in many cases but cannot stand as a general principle (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation