Switch to: References

Add citations

You must login to add citations.
  1. Hypothetical Frequencies as Approximations.Jer Steeger - 2024 - Erkenntnis 89 (4):1295-1325.
    Hájek (Erkenntnis 70(2):211–235, 2009) argues that probabilities cannot be the limits of relative frequencies in counterfactual infinite sequences. I argue for a different understanding of these limits, drawing on Norton’s (Philos Sci 79(2):207–232, 2012) distinction between approximations (inexact descriptions of a target) and idealizations (separate models that bear analogies to the target). Then, I adapt Hájek’s arguments to this new context. These arguments provide excellent reasons not to use hypothetical frequencies as idealizations, but no reason not to use them as (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • How to Choose a Gauge? The Case of Hamiltonian Electromagnetism.Henrique Gomes & Jeremy Butterfield - 2024 - Erkenntnis 89 (4):1581-1615.
    We develop some ideas about gauge symmetry in the context of Maxwell’s theory of electromagnetism in the Hamiltonian formalism. One great benefit of this formalism is that it pairs momentum and configurational degrees of freedom, so that a decomposition of one side into subsets can be translated into a decomposition of the other. In the case of electromagnetism, this enables us to pair degrees of freedom of the electric field with degrees of freedom of the vector potential. Another benefit is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Scientific understanding in the Aharonov‐Bohm effect.Elay Shech - 2022 - Theoria 88 (5):943-971.
    By appealing to resources found in the scientific understanding literature, I identify in what senses idealisations afford understanding in the context of the (magnetic) Aharonov-Bohm effect. Three types of concepts of understanding are discussed: understanding-what, which has to do with understanding a phenomenon; understanding-with, which has to do with understanding a scientific theory; and understanding-why, which has to do with the reason some phenomenon occurs. Consequently, I outline an account of understanding-with that is suggested by the historical controversy surrounding the (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Philosophical Issues Concerning Phase Transitions and Anyons: Emergence, Reduction, and Explanatory Fictions.Elay Shech - 2019 - Erkenntnis 84 (3):585-615.
    Various claims regarding intertheoretic reduction, weak and strong notions of emergence, and explanatory fictions have been made in the context of first-order thermodynamic phase transitions. By appealing to John Norton’s recent distinction between approximation and idealization, I argue that the case study of anyons and fractional statistics, which has received little attention in the philosophy of science literature, is more hospitable to such claims. In doing so, I also identify three novel roles that explanatory fictions fulfill in science. Furthermore, I (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Idealization and abstraction in scientific modeling.Demetris Portides - 2018 - Synthese 198 (Suppl 24):5873-5895.
    I argue that we cannot adequately characterize idealization and abstraction and the distinction between the two on the grounds that they have distinct semantic properties. By doing so, on the one hand, we focus on the conceptual products of the two processes in making the distinction and we overlook the importance of the nature of the thought processes that underlie model-simplifying assumptions. On the other hand, we implicitly rely on a sense of abstraction as subtraction, which is unsuitable for explicating (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Physics' Contribution to Causation.Max Kistler - 2020 - Kriterion - Journal of Philosophy (AO):21-46.
    Most philosophers of physics are eliminativists about causation. Following Bertrand Russell’s lead, they think that causation is a folk concept that cannot be rationally reconstructed within a worldview informed by contemporary physics. Against this thesis, I argue that physics contributes to shaping the concept of causation, in two ways. 1. Special Relativity is a physical theory that expresses causal constraints. 2. The physical concept of a conserved quantity can be used in the functional reduction of the notion of causation. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Physics’ Contribution to Causation.Max Kistler - 2021 - Kriterion - Journal of Philosophy 35 (1):21-46.
    Most philosophers of physics are eliminativists about causation. Following Bertrand Russell’s lead, they think that causation is a folk concept that cannot be rationally reconstructed within a worldview informed by contemporary physics. Against this thesis, I argue that physics contributes to shaping the concept of causation, in two ways. (1) Special Relativity is a physical theory that expresses causal constraints. (2) The physical concept of a conserved quantity can be used in the functional reduction of the notion of causation. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The Coalescence Approach to Inequivalent Representation: Pre-QM ∞ Parallels.Caspar Jacobs - 2023 - British Journal for the Philosophy of Science 74 (4):1069-1090.
    Ruetsche ([2011]) argues that the occurrence of unitarily inequivalent representations in quantum theories with infinitely many degrees of freedom poses a novel interpretational problem. According to Ruetsche, such theories compel us to reject the so-called ideal of pristine interpretation; she puts forward the ‘coalescence approach’ as an alternative. In this paper I offer a novel defence of the coalescence approach. The defence rests on the claim that the ideal of pristine interpretation already fails before one considers the peculiarities of QM∞: (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Holism as the empirical significance of symmetries.Henrique Gomes - 2021 - European Journal for Philosophy of Science 11 (3):1-41.
    Not all symmetries are on a par. For instance, within Newtonian mechanics, we seem to have a good grasp on the empirical significance of boosts, by applying it to subsystems. This is exemplified by the thought experiment known as Galileo’s ship: the inertial state of motion of a ship is immaterial to how events unfold in the cabin, but is registered in the values of relational quantities such as the distance and velocity of the ship relative to the shore. But (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reductive Explanation and the Construction of Quantum Theories.Benjamin H. Feintzeig - 2022 - British Journal for the Philosophy of Science 73 (2):457-486.
    I argue that philosophical issues concerning reductive explanations help constrain the construction of quantum theories with appropriate state spaces. I illustrate this general proposal with two examples of restricting attention to physical states in quantum theories: regular states and symmetry-invariant states. 1Introduction2Background2.1 Physical states2.2 Reductive explanations3The Proposed ‘Correspondence Principle’4Example: Regularity5Example: Symmetry-Invariance6Conclusion: Heuristics and Discovery.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The non-ideal theory of the Aharonov–Bohm effect.John Dougherty - 2020 - Synthese (12):12195-12221.
    Elay Shech and John Earman have recently argued that the common topological interpretation of the Aharonov–Bohm (AB) effect is unsatisfactory because it fails to justify idealizations that it presupposes. In particular, they argue that an adequate account of the AB effect must address the role of boundary conditions in certain ideal cases of the effect. In this paper I defend the topological interpretation against their criticisms. I consider three types of idealization that might arise in treatments of the effect. First, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • A New Version of the Aharonov–Bohm Effect.César R. de Oliveira & Renan G. Romano - 2020 - Foundations of Physics 50 (3):137-146.
    We propose a simple situation in which the magnetic Aharonov–Bohm potential influences the values of the deficiency indices of the initial Schrödinger operator, so determining whether the particle interacts with the solenoid or not. Even with the particle excluded from the magnetic field, the number of self-adjoint extensions of the initial Hamiltonian depends on the magnetic flux. This is a new point of view of the Aharonov–Bohm effect.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • On gauge symmetries, indiscernibilities, and groupoid-theoretical equalities.Gabriel Catren - 2022 - Studies in History and Philosophy of Science Part A 91 (C):244-261.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark