Citations of:
Add citations
You must login to add citations.
|
|
What is the significance of high-speed computation for the sciences? How far does it result in a practice of simulation which affects the sciences on a very basic level? To offer more historical context to these recurring questions, this paper revisits the roots of computer simulation in the development of the ENIAC computer and the Monte Carlo method.With the aim of identifying more clearly what really changed in the history of science in the 1940s and 1950s due to the computer, (...) |
|
There are many tangled normative and technical questions involved in evaluating the quality of software used in epidemiological simulations. In this paper we answer some of these questions and offer practical guidance to practitioners, funders, scientific journals, and consumers of epidemiological research. The heart of our paper is a case study of the Imperial College London covid-19 simulator, set in the context of recent work in epistemology of simulation and philosophy of epidemiology. |
|
In this paper, we pursue three general aims: (I) We will define a notion of fundamental opacity and ask whether it can be found in High Energy Physics (HEP), given the involvement of machine learning (ML) and computer simulations (CS) therein. (II) We identify two kinds of non-fundamental, contingent opacity associated with CS and ML in HEP respectively, and ask whether, and if so how, they may be overcome. (III) We address the question of whether any kind of opacity, contingent (...) |
|
|
|
Several philosophical issues in connection with computer simulations rely on the assumption that results of simulations are trustworthy. Examples of these include the debate on the experimental role of computer simulations :483–496, 2009; Morrison in Philos Stud 143:33–57, 2009), the nature of computer data Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013; Humphreys, in: Durán, Arnold Computer simulations and the changing face of scientific experimentation, Cambridge Scholars Publishing, Barcelona, 2013), and the explanatory power of (...) |
|
Many philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations (...) |
|
Una imagen muy generalizada a la hora de entender el software de computador es la que lo representa como una “caja negra”: no importa realmente saber qué partes lo componen internamente, sino qué resultados se obtienen de él según ciertos valores de entrada. Al hacer esto, muchos problemas filosóficos son ocultados, negados o simplemente mal entendidos. Este artículo discute tres unidades de análisis del software de computador, esto es, las especificaciones, los algoritmos y los procesos computacionales. El objetivo central es (...) |