Switch to: References

Add citations

You must login to add citations.
  1. Tractability and the computational mind.Rineke Verbrugge & Jakub Szymanik - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 339-353.
    We overview logical and computational explanations of the notion of tractability as applied in cognitive science. We start by introducing the basics of mathematical theories of complexity: computability theory, computational complexity theory, and descriptive complexity theory. Computational philosophy of mind often identifies mental algorithms with computable functions. However, with the development of programming practice it has become apparent that for some computable problems finding effective algorithms is hardly possible. Some problems need too much computational resource, e.g., time or memory, to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Parameterized Complexity of Theory of Mind Reasoning in Dynamic Epistemic Logic.Iris van de Pol, Iris van Rooij & Jakub Szymanik - 2018 - Journal of Logic, Language and Information 27 (3):255-294.
    Theory of mind refers to the human capacity for reasoning about others’ mental states based on observations of their actions and unfolding events. This type of reasoning is notorious in the cognitive science literature for its presumed computational intractability. A possible reason could be that it may involve higher-order thinking. To investigate this we formalize theory of mind reasoning as updating of beliefs about beliefs using dynamic epistemic logic, as this formalism allows to parameterize ‘order of thinking.’ We prove that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dynamics of lying.Hans van Ditmarsch - 2014 - Synthese 191 (5):1-33.
    We propose a dynamic logic of lying, wherein a ‘lie that $\varphi $ ’ (where $\varphi $ is a formula in the logic) is an action in the sense of dynamic modal logic, that is interpreted as a state transformer relative to the formula $\varphi $ . The states that are being transformed are pointed Kripke models encoding the uncertainty of agents about their beliefs. Lies can be about factual propositions but also about modal formulas, such as the beliefs of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Logic in a Social Setting.Johan van Benthem - 2011 - Episteme 8 (3):227-247.
    Taking Backward Induction as its running example, this paper explores avenues for a logic of information-driven social action. We use recent results on limit phenomena in knowledge updating and belief revision, procedural rationality, and a ‘Theory of Play’ analyzing how games are played by different agents.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations