Switch to: References

Citations of:

Purity as an ideal of proof

In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 179-197 (2008)

Add citations

You must login to add citations.
  1. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Challenges Facing Counterfactual Accounts of Explanation in Mathematics.Marc Lange - 2022 - Philosophia Mathematica 30 (1):32-58.
    Some mathematical proofs explain why the theorems they prove hold. This paper identifies several challenges for any counterfactual account of explanation in mathematics (that is, any account according to which an explanatory proof reveals how the explanandum would have been different, had facts in the explanans been different). The paper presumes that countermathematicals can be nontrivial. It argues that nevertheless, a counterfactual account portrays explanatory power as too easy to achieve, does not capture explanatory asymmetry, and fails to specify why (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • How discrete patterns emerge from algorithmic fine-tuning: A visual plea for kroneckerian finitism.Ivahn Smadja - 2009 - Topoi 29 (1):61-75.
    This paper sets out to adduce visual evidence for Kroneckerian finitism by making perspicuous some of the insights that buttress Kronecker’s conception of arithmetization as a process aiming at disclosing the arithmetical essence enshrined in analytical formulas, by spotting discrete patterns through algorithmic fine-tuning. In the light of a fairly tractable case study, it is argued that Kronecker’s main tenet in philosophy of mathematics is not so much an ontological as a methodological one, inasmuch as highly demanding requirements regarding mathematical (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  • Proofs of the Compactness Theorem.Alexander Paseau - 2010 - History and Philosophy of Logic 31 (1):73-98.
    In this study, several proofs of the compactness theorem for propositional logic with countably many atomic sentences are compared. Thereby some steps are taken towards a systematic philosophical study of the compactness theorem. In addition, some related data and morals for the theory of mathematical explanation are presented.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lagrange’s theory of analytical functions and his ideal of purity of method.Marco Panza & Giovanni Ferraro - 2012 - Archive for History of Exact Sciences 66 (2):95-197.
    We reconstruct essential features of Lagrange’s theory of analytical functions by exhibiting its structure and basic assumptions, as well as its main shortcomings. We explain Lagrange’s notions of function and algebraic quantity, and we concentrate on power-series expansions, on the algorithm for derivative functions, and the remainder theorem—especially on the role this theorem has in solving geometric and mechanical problems. We thus aim to provide a better understanding of Enlightenment mathematics and to show that the foundations of mathematics did not, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Evidence, explanation and enhanced indispensability.Daniele Molinini - 2016 - Synthese 193 (2):403-422.
    In this paper I shall adopt a possible reading of the notions of ‘explanatory indispensability’ and ‘genuine mathematical explanation in science’ on which the Enhanced Indispensability Argument proposed by Alan Baker is based. Furthermore, I shall propose two examples of mathematical explanation in science and I shall show that, whether the EIA-partisans accept the reading I suggest, they are easily caught in a dilemma. To escape this dilemma they need to adopt some account of explanation and offer a plausible answer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Ontological Purity for Formal Proofs.Robin Martinot - forthcoming - Review of Symbolic Logic:1-40.
    Purity is known as an ideal of proof that restricts a proof to notions belonging to the ‘content’ of the theorem. In this paper, our main interest is to develop a conception of purity for formal (natural deduction) proofs. We develop two new notions of purity: one based on an ontological notion of the content of a theorem, and one based on the notions of surrogate ontological content and structural content. From there, we characterize which (classical) first-order natural deduction proofs (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definitions in practice: An interview study.V. J. W. Coumans & L. Consoli - 2023 - Synthese 202 (1):1-32.
    In the philosophy of mathematical practice, the aim is to understand the various aspects of this practice. Even though definitions are a central element of mathematical practice, the study of this aspect of mathematical practice is still in its infancy. In particular, there is little empirical evidence to substantiate claims about definitions in practice. In this article, we address this gap by reporting on an empirical investigation on how mathematicians create definitions and which roles and properties they attribute to them. (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark