Citations of:
Add citations
You must login to add citations.
|
|
This book explores the interplay between logic and science, describing new trends, new issues and potential research developments. |
|
In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- . |
|
In the nineteenth and twentieth centuries many mathematicians referred to intuition as the indispensable research tool for obtaining new results. In this essay we will analyse a group of mathematicians who interacted with Luitzen Egbertus Jan Brouwer in order to compare their conceptions of intuition. We will see how to the same word “intuition” very different meanings corresponded: they varied from geometrical vision, to a unitary view of a demonstration, to the perception of time, to the faculty of considering concepts (...) |
|
|
|
Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...) |
|
|
|
Resumen: Janet Folina ha propuesto una interpretación del convencionalismo de Poincaré contraria a la que ofrecen Michael Friedman y Robert DiSalle. Ambos afirman que la propuesta de Poincaré queda refutada por la relati-vidad general pues supone una noción restrictiva de los principios a priori. Folina sostiene que el convencionalismo de Poincaré no es contradictorio con la relatividad general porque permite una noción relativizada de los princi-pios a priori. Intento mostrar que la estrategia de Folina es ineficaz porque Poincaré no puede (...) No categories |
|
|
|
Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...) |
|
This paper is composed of two independent parts. The first is concerned with Russell’s early philosophy of mathematics and his quarrel with Poincaré about the nature of their opposition. I argue that the main divergence between the two philosophers was about the nature of definitions. In the second part, I briefly present Le!niewski’s Ontology and suggest that Le!niewski’s original treatment of definitions in the foundations of mathematics is the natural solution to the problem that divided Russell and Poincaré. |
|
In its origins Dialogical logic constituted one part of a new movement called the Erlangen School or Erlangen Constructivism. Its goal was to provide a new start to a general theory of language and of science. According to the Erlangen-School, language is not just a fact that we discover, but a human cultural accomplishment whose construction reason can and should control. The resulting project of intentionally constructing a scientific language was called the Orthosprache-project. Unfortunately, the Orthosprache-project was not further developed (...) |
|
often insisted existence in mathematics means logical consistency, and formal logic is the sole guarantor of rigor. The paper joins this to his view of intuition and his own mathematics. It looks at predicativity and the infinite, Poincaré's early endorsement of the axiom of choice, and Cantor's set theory versus Zermelo's axioms. Poincaré discussed constructivism sympathetically only once, a few months before his death, and conspicuously avoided committing himself. We end with Poincaré on Couturat, Russell, and Hilbert. |
|
En sus orígenes la lógica dialógica constituyó la fundamentación lógica de un nuevo movimiento llamado Escuela de Erlangen o Constructivismo de Erlangen, el que debía proporcionar un nuevo comienzo a una teoría general del lenguaje y de la ciencia. En lo referente a teoría general del lenguaje, la Escuela de Erlangen afirma que el lenguaje no es un hecho que descubrimos, sino una realización cultural humana cuya construcción puede y debe ser controlada. El proyecto de un desarrollo constructivo de un (...) No categories |
|
Inferential communities are communities using specific substantial argumentative schemes. The religious or scientific communities are examples. I discuss the status of the mathematical community as it appears through the position held by the French mathematician Henri Poincaré during his famous ar-guments with Russell, Hilbert, Peano and Cantor. The paper focuses on the status of complete induction and how logic and psychology shape the community of mathematicians and the teaching of mathematics. No categories |
|
In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent (...) |
|
The infinite regress of Carroll’s ‘What the Tortoise said to Achilles’ is interpreted as a problem in the epistemology of mathematical proof. An approach to the problem that is both diagrammatic and non-logical is presented with respect to a specific inference of elementary geometry. |
|
|
|
No categories |
|
The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...) |