Switch to: References

Add citations

You must login to add citations.
  1. Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Hilbert's program then and now.Richard Zach - 2006 - In Dale Jacquette (ed.), Philosophy of Logic. North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Intuitionistic Background of Gentzen's 1935 and 1936 Consistency Proofs and Their Philosophical Aspects.Yuta Takahashi - 2018 - Annals of the Japan Association for Philosophy of Science 27:1-26.
    Gentzen's three consistency proofs for elementary number theory have a common aim that originates from Hilbert's Program, namely, the aim to justify the application of classical reasoning to quantified propositions in elementary number theory. In addition to this common aim, Gentzen gave a “finitist” interpretation to every number-theoretic proposition with his 1935 and 1936 consistency proofs. In the present paper, we investigate the relationship of this interpretation with intuitionism in terms of the debate between the Hilbert School and the Brouwer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Representations and the Foundations of Mathematics.Sam Sanders - 2022 - Notre Dame Journal of Formal Logic 63 (1):1-28.
    The representation of mathematical objects in terms of (more) basic ones is part and parcel of (the foundations of) mathematics. In the usual foundations of mathematics, namely, ZFC set theory, all mathematical objects are represented by sets, while ordinary, namely, non–set theoretic, mathematics is represented in the more parsimonious language of second-order arithmetic. This paper deals with the latter representation for the rather basic case of continuous functions on the reals and Baire space. We show that the logical strength of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Hilbert's 'Verunglückter Beweis', the first epsilon theorem, and consistency proofs.Richard Zach - 2004 - History and Philosophy of Logic 25 (2):79-94.
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain "general consistency result" due to Bernays. An analysis of the form of this so-called "failed proof" (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Critical study of Michael Potter’s Reason’s Nearest Kin. [REVIEW]Richard Zach - 2005 - Notre Dame Journal of Formal Logic 46 (4):503-513.
    Critical study of Michael Potter, Reason's Nearest Kin. Philosophies of Arithmetic from Kant to Carnap. Oxford University Press, Oxford, 2000. x + 305 pages.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • What does Gödel's second theorem say?Michael Detlefsen - 2001 - Philosophia Mathematica 9 (1):37-71.
    We consider a seemingly popular justification (we call it the Re-flexivity Defense) for the third derivability condition of the Hilbert-Bernays-Löb generalization of Godel's Second Incompleteness Theorem (G2). We argue that (i) in certain settings (rouglily, those where the representing theory of an arithmetization is allowed to be a proper subtheory of the represented theory), use of the Reflexivity Defense to justify the tliird condition induces a fourth condition, and that (ii) the justification of this fourth condition faces serious obstacles. We (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is Mathematics Problem Solving or Theorem Proving?Carlo Cellucci - 2017 - Foundations of Science 22 (1):183-199.
    The question that is the subject of this article is not intended to be a sociological or statistical question about the practice of today’s mathematicians, but a philosophical question about the nature of mathematics, and specifically the method of mathematics. Since antiquity, saying that mathematics is problem solving has been an expression of the view that the method of mathematics is the analytic method, while saying that mathematics is theorem proving has been an expression of the view that the method (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Universism and extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • How to Say Things with Formalisms.David Auerbach - 1992 - In Michael Detlefsen (ed.), Proof, Logic, and Formalization. Routledge. pp. 77--93.
    Recent attention to "self-consistent" (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel Second Incompleteness Theorem and its effect on Hilbert's Program. The traditional rendering and consequence is defended with new arguments justifying the intensional correctness of the derivability conditions.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations