Switch to: References

Add citations

You must login to add citations.
  1. Universality, Invariance, and the Foundations of Computational Complexity in the light of the Quantum Computer.Michael Cuffaro - 2018 - In Hansson Sven Ove (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Cham, Switzerland: Springer Verlag. pp. 253-282.
    Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding our practical limits. In this chapter I argue that the science of \emph{quantum computing} illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Parallelism Thesis, Many World Interpretation and Physical Information Thesis.Giacomo Lini - 2015 - Philosophies 1 (1):102--110.
    The aim of this paper is to address a particular interpretation of quantum computational processes, namely, the so called Many World Interpretation. I will show that if such an interpretation is supported by the Quantum Parallelism Thesis and the Physical Information Thesis at the same time, then it falls under circularity. I will suggest, in fact, that as long as this variation states both PIT and QPT cannot furnish a physical explanation of the latter unless it is already stating the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • How-Possibly Explanations in (Quantum) Computer Science.Michael E. Cuffaro - 2015 - Philosophy of Science 82 (5):737-748.
    A primary goal of quantum computer science is to find an explanation for the fact that quantum computers are more powerful than classical computers. In this paper I argue that to answer this question is to compare algorithmic processes of various kinds and to describe the possibility spaces associated with these processes. By doing this, we explain how it is possible for one process to outperform its rival. Further, in this and similar examples little is gained in subsequently asking a (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Direct download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Physical Explanation for Quantum Computational Speedup.Michael Cuffaro - 2013 - Dissertation, The University of Western Ontario
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader's consideration, a tentative resolution to it. In particular, I argue, in this dissertation, that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always be representable as product (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Necessity of Entanglement for the Explanation of Quantum Speedup.Michael Cuffaro - manuscript
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark