Switch to: References

Add citations

You must login to add citations.
  1. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer might (...)
    Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  • Rational Analysis, Intractability, and the Prospects of ‘as If’-Explanations.Iris van Rooij, Cory D. Wright, Johan Kwisthout & Todd Wareham - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Computing Mechanisms.Gualtiero Piccinini - 2007 - Philosophy of Science 74 (4):501-526.
    This paper offers an account of what it is for a physical system to be a computing mechanism—a system that performs computations. A computing mechanism is a mechanism whose function is to generate output strings from input strings and (possibly) internal states, in accordance with a general rule that applies to all relevant strings and depends on the input strings and (possibly) internal states for its application. This account is motivated by reasons endogenous to the philosophy of computing, namely, doing (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   86 citations  
  • Computationalism, The Church–Turing Thesis, and the Church–Turing Fallacy.Gualtiero Piccinini - 2007 - Synthese 154 (1):97-120.
    The Church–Turing Thesis (CTT) is often employed in arguments for computationalism. I scrutinize the most prominent of such arguments in light of recent work on CTT and argue that they are unsound. Although CTT does nothing to support computationalism, it is not irrelevant to it. By eliminating misunderstandings about the relationship between CTT and computationalism, we deepen our appreciation of computationalism as an empirical hypothesis.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Technology and Mathematics.Sven Ove Hansson - 2020 - Philosophy and Technology 33 (1):117-139.
    In spite of their practical importance, the connections between technology and mathematics have not received much scholarly attention. This article begins by outlining how the technology–mathematics relationship has developed, from the use of simple aide-mémoires for counting and arithmetic, via the use of mathematics in weaving, building and other trades, and the introduction of calculus to solve technological problems, to the modern use of computers to solve both technological and mathematical problems. Three important philosophical issues emerge from this historical résumé: (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computers Are Syntax All the Way Down: Reply to Bozşahin.William J. Rapaport - 2019 - Minds and Machines 29 (2):227-237.
    A response to a recent critique by Cem Bozşahin of the theory of syntactic semantics as it applies to Helen Keller, and some applications of the theory to the philosophy of computer science.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Mind Is (in Part) Philosophy of Computer Science.Darren Abramson - 2011 - Minds and Machines 21 (2):203-219.
    In this paper I argue that whether or not a computer can be built that passes the Turing test is a central question in the philosophy of mind. Then I show that the possibility of building such a computer depends on open questions in the philosophy of computer science: the physical Church-Turing thesis and the extended Church-Turing thesis. I use the link between the issues identified in philosophy of mind and philosophy of computer science to respond to a prominent argument (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • SAD Computers and Two Versions of the Church–Turing Thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that the Effective version (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Philosophy of Computer Science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
  • On the Possibility, or Otherwise, of Hypercomputation.Philip D. Welch - 2004 - British Journal for the Philosophy of Science 55 (4):739-746.
    We claim that a recent article of P. Cotogno ([2003]) in this journal is based on an incorrect argument concerning the non-computability of diagonal functions. The point is that whilst diagonal functions are not computable by any function of the class over which they diagonalise, there is no ?logical incomputability? in their being computed over a wider class. Hence this ?logical incomputability? regrettably cannot be used in his argument that no hypercomputation can compute the Halting problem. This seems to lead (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Computational Modeling Vs. Computational Explanation: Is Everything a Turing Machine, and Does It Matter to the Philosophy of Mind?Gualtiero Piccinini - 2007 - Australasian Journal of Philosophy 85 (1):93 – 115.
    According to pancomputationalism, everything is a computing system. In this paper, I distinguish between different varieties of pancomputationalism. I find that although some varieties are more plausible than others, only the strongest variety is relevant to the philosophy of mind, but only the most trivial varieties are true. As a side effect of this exercise, I offer a clarified distinction between computational modelling and computational explanation.<br><br>.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • A Brief Critique of Pure Hypercomputation.Paolo Cotogno - 2009 - Minds and Machines 19 (3):391-405.
    Hypercomputation—the hypothesis that Turing-incomputable objects can be computed through infinitary means—is ineffective, as the unsolvability of the halting problem for Turing machines depends just on the absence of a definite value for some paradoxical construction; nature and quantity of computing resources are immaterial. The assumption that the halting problem is solved by oracles of higher Turing degree amounts just to postulation; infinite-time oracles are not actually solving paradoxes, but simply assigning them conventional values. Special values for non-terminating processes are likewise (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • How to Make a Meaningful Comparison of Models: The Church–Turing Thesis Over the Reals.Maël Pégny - 2016 - Minds and Machines 26 (4):359-388.
    It is commonly believed that there is no equivalent of the Church–Turing thesis for computation over the reals. In particular, computational models on this domain do not exhibit the convergence of formalisms that supports this thesis in the case of integer computation. In the light of recent philosophical developments on the different meanings of the Church–Turing thesis, and recent technical results on analog computation, I will show that this current belief confounds two distinct issues, namely the extension of the notion (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Diagonal Method and Hypercomputation.Toby Ord & Tien D. Kieu - 2005 - British Journal for the Philosophy of Science 56 (1):147-156.
    The diagonal method is often used to show that Turing machines cannot solve their own halting problem. There have been several recent attempts to show that this method also exposes either contradiction or arbitrariness in other theoretical models of computation which claim to be able to solve the halting problem for Turing machines. We show that such arguments are flawed—a contradiction only occurs if a type of machine can compute its own diagonal function. We then demonstrate why such a situation (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   2 citations