Citations of:
Add citations
You must login to add citations.
|
|
Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this (...) |
|
We consider the problem of induction over languages containing binary relations and outline a way of interpreting and constructing a class of probability functions on the sentences of such a language. Some principles of inductive reasoning satisfied by these probability functions are discussed, leading in turn to a representation theorem for a more general class of probability functions satisfying these principles. |
|
In Section 10 of Grundgesetze, Volume I, Frege advances a mathematical argument (known as the permutation argument), by means of which he intends to show that an arbitrary value-range may be identified with the True, and any other one with the False, without contradicting any stipulations previously introduced (we shall call this claim the identifiability thesis, following Schroeder-Heister (1987)). As far as we are aware, there is no consensus in the literature as to (i) the proper interpretation of the permutation (...) |
|
PG (Plural Grundgesetze) is a predicative monadic second-order system which is aimed to derive second-order Peano arithmetic. It exploits the notion of plural quantification and a few Fregean devices, among which the infamous Basic Law V. In this paper, a model-theoretical consistency proof for the system PG is provided. |
|
PG (Plural Grundgesetze) is a predicative monadic second-order system which exploits the notion of plural quantification and a few Fregean devices, among which a formulation of the infamous Basic Law V. It is shown that second-order Peano arithmetic can be derived in PG. I also investigate the philosophical issue of predicativism connected to PG. In particular, as predicativism about concepts seems rather un-Fregean, I analyse whether there is a way to make predicativism compatible with Frege’s logicism. |
|
This paper charts some early history of the possible worlds semantics for modal logic, starting with the pioneering work of Prior and Meredith. The contributions of Geach, Hintikka, Kanger, Kripke, Montague, and Smiley are also discussed. |
|
Kripke’s notion of groundedness plays a central role in many responses to the semantic paradoxes. Can the notion of groundedness be brought to bear on the paradoxes that arise in connection with abstraction principles? We explore a version of grounded abstraction whereby term models are built up in a ‘grounded’ manner. The results are mixed. Our method solves a problem concerning circularity and yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V. However, the method is (...) |