Switch to: References

Citations of:

The Berry paradox

Complexity 1 (1):26-30 (1995)

Add citations

You must login to add citations.
  1. Paradoxes and Contemporary Logic.Andrea Cantini - 2008 - Stanford Encyclopedia of Philosophy.
  • On Proofs of the Incompleteness Theorems Based on Berry's Paradox by Vopěnka, Chaitin, and Boolos.Makoto Kikuchi, Taishi Kurahashi & Hiroshi Sakai - 2012 - Mathematical Logic Quarterly 58 (4-5):307-316.
    By formalizing Berry's paradox, Vopěnka, Chaitin, Boolos and others proved the incompleteness theorems without using the diagonal argument. In this paper, we shall examine these proofs closely and show their relationships. Firstly, we shall show that we can use the diagonal argument for proofs of the incompleteness theorems based on Berry's paradox. Then, we shall show that an extension of Boolos' proof can be considered as a special case of Chaitin's proof by defining a suitable Kolmogorov complexity. We shall show (...)
    Direct download  
    Export citation  
    Bookmark   7 citations  
  • On Berry's Paradox and Nondiagonal Constructions.Dev K. Roy - 1999 - Complexity 4 (3):35-38.
    Direct download  
    Export citation  
  • Anselm's Argument and Berry's Paradox.Philippe Schlenker - 2009 - Noûs 43 (2):214 - 223.
    We argue that Anselm’s ontological argument (or at least one reconstruction of it) is based on an empirical version of Berry’s paradox. It is invalid, but it takes some understanding of trivalence to see why this is so. Under our analysis, Anselm’s use of the notion of existence is not the heart of the matter; rather, trivalence is.
    Direct download (4 more)  
    Export citation  
    Bookmark   3 citations  
  • A New Version of Algorithmic Information Theory.G. J. Chaitin - 1996 - Complexity 1 (4):55-59.
  • Note on 'Normalisation for Bilateral Classical Logic with Some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Direct download (2 more)  
    Export citation  
    Bookmark   1 citation  
  • Le Paradoxe de Richard : Une Solution Kolmogorovienne.Alain Séguy-Duclot - 2015 - Dialogue 54 (2):209-224.
    Après une étude du paradoxe de Richard, on considère plusieurs de ses solutions. On reformule ensuite le paradoxe grâce à la théorie de la complexité de Kolmogorov et on en donne une solution en partant de la démonstration par Chaitin du sens seulement relatif de la complexité de Kolmogorov.In this article, I study Richard’s paradox, and I consider several of its solutions. I then restate the paradox using Kolmogorov’s theory of complexity. Taking as a starting point Chaitin’s demonstration that Kolmogorov’s (...)
    No categories
    Direct download (3 more)  
    Export citation