Switch to: References

Add citations

You must login to add citations.
  1. Aspects of Superdeterminism Made Intuitive.Louis Vervoort & Vitaly Nikolaev - 2022 - Foundations of Physics 53 (1):1-22.
    We attempt to make superdeterminism more intuitive, notably by simulating a deterministic model system, a billiard game. In this system an initial ‘bang’ correlates all events, just as in the superdeterministic universe. We introduce the notions of ‘strong’ and ‘soft’ superdeterminism, in order to clarify debates in the literature. Based on the analogy with billiards, we show that superdeterministic correlations may exist as a matter of principle, but be undetectable for all practical purposes. Even if inaccessible, such strong-superdeterministic correlations can (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entanglement of Observables: Quantum Conditional Probability Approach.Andrei Khrennikov & Irina Basieva - 2023 - Foundations of Physics 53 (5):1-22.
    This paper is devoted to clarification of the notion of entanglement through decoupling it from the tensor product structure and treating as a constraint posed by probabilistic dependence of quantum observable _A_ and _B_. In our framework, it is meaningless to speak about entanglement without pointing to the fixed observables _A_ and _B_, so this is _AB_-entanglement. Dependence of quantum observables is formalized as non-coincidence of conditional probabilities. Starting with this probabilistic definition, we achieve the Hilbert space characterization of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum postulate vs. quantum nonlocality: on the role of the Planck constant in Bell’s argument.Andrei Khrennikov - 2021 - Foundations of Physics 51 (1):1-12.
    We present a quantum mechanical analysis of Bell’s approach to quantum foundations based on his hidden-variable model. We claim and try to justify that the Bell model contradicts to the Heinsenberg’s uncertainty and Bohr’s complementarity principles. The aim of this note is to point to the physical seed of the aforementioned principles. This is the Bohr’s quantum postulate: the existence of indivisible quantum of action given by the Planck constant h. By contradicting these basic principles of QM, Bell’s model implies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations