Switch to: References

Add citations

You must login to add citations.
  1. Romanian Studies in Philosophy of Science.Ilie Parvu, Gabriel Sandu & Iulian D. Toader (eds.) - 2015 - Boston Studies in the Philosophy and History of Science, vol. 313: Springer.
    This book presents a collection of studies by Romanian philosophers, addressing foundational issues currently debated in contemporary philosophy of science. It offers a historical survey of the tradition of scientific philosophy in Romania. It examines some problems in the foundations of logic, mathematics, linguistics, the natural and social sciences. Among the more specific topics, it discusses scientific explanation, models, and mechanisms, as well as memory, artifacts, and rules of research. The book is useful to those interested in the philosophy of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The View from a Wigner Bubble.Eric G. Cavalcanti - 2021 - Foundations of Physics 51 (2):1-31.
    In a recent no-go theorem [Bong et al., Nature Physics (2020)], we proved that the predictions of unitary quantum mechanics for an extended Wigner’s friend scenario are incompatible with any theory satisfying three metaphysical assumptions, the conjunction of which we call “Local Friendliness”: Absoluteness of Observed Events, Locality and No-Superdeterminism. In this paper (based on an invited talk for the QBism jubilee at the 2019 Växjö conference) I discuss the implications of this theorem for QBism, as seen from the point (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication.Jan Walleczek & Gerhard Grössing - 2016 - Foundations of Physics 46 (9):1208-1228.
    It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a ‘no-go’ theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell’s theorem, we argue that Bell employed (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum causal models: the merits of the spirit of Reichenbach’s principle for understanding quantum causal structure.Robin Lorenz - 2022 - Synthese 200 (5):1-27.
    Through the introduction of his ‘common cause principle’ [The Direction of Time, 1956], Hans Reichenbach was the first to formulate a precise link relating causal claims to statements of probability. Despite some criticism, the principle has been hugely influential and successful—a pillar of scientific practice, as well as guiding our reasoning in everyday life. However, Bell’s theorem, taken in conjunction with quantum theory, challenges this principle in a fundamental sense at the microscopic level. For the same reason, the celebrated causal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • A generalized definition of Bell’s local causality.Gábor Hofer-Szabó & Péter Vecsernyés - 2016 - Synthese 193 (10).
    This paper aims to implement Bell’s notion of local causality into a framework, called local physical theory, which is general enough to integrate both probabilistic and spatiotemporal concepts and also classical and quantum theories. Bell’s original idea of local causality will then arise as the classical case of our definition. First, we investigate what is needed for a local physical theory to be locally causal. Then we compare local causality with Reichenbach’s common cause principle and relate both to the Bell (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • What can bouncing oil droplets tell us about quantum mechanics?Peter W. Evans & Karim P. Y. Thébault - 2020 - European Journal for Philosophy of Science 10 (3):1-32.
    A recent series of experiments have demonstrated that a classical fluid mechanical system, constituted by an oil droplet bouncing on a vibrating fluid surface, can be induced to display a number of behaviours previously considered to be distinctly quantum. To explain this correspondence it has been suggested that the fluid mechanical system provides a single-particle classical model of de Broglie’s idiosyncratic ‘double solution’ pilot wave theory of quantum mechanics. In this paper we assess the epistemic function of the bouncing oil (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation