Switch to: References

Add citations

You must login to add citations.
  1. A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  • Quantum Decoherence: A Logical Perspective.Sebastian Fortin & Leonardo Vanni - 2014 - Foundations of Physics 44 (12):1258-1268.
    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Self‐Induced Decoherence and the Classical Limit of Quantum Mechanics.Mario Castagnino & Olimpia Lombardi - 2005 - Philosophy of Science 72 (5):764-776.
    In this paper we argue that the emergence of the classical world from the underlying quantum reality involves two elements: self-induced decoherence and macroscopicity. Self-induced decoherence does not require the openness of the system and its interaction with the environment: a single closed system can decohere when its Hamiltonian has continuous spectrum. We show that, if the system is macroscopic enough, after self-induced decoherence it can be described as an ensemble of classical distributions weighted by their corresponding probabilities. We also (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
  • A general conceptual framework for decoherence in closed and open systems.Mario Castagnino, Roberto Laura & Olimpia Lombardi - 2007 - Philosophy of Science 74 (5):968-980.
    In this paper we argue that the formalisms for decoherence originally devised to deal just with closed or open systems can be subsumed under a general conceptual framework, in such a way that they cooperate in the understanding of the same physical phenomenon. This new perspective dissolves certain conceptual difficulties of the einselection program but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence. †To contact the authors, please write to: (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   11 citations