Switch to: References

Add citations

You must login to add citations.
  1. Visualizing Thought.Barbara Tversky - 2011 - Topics in Cognitive Science 3 (3):499-535.
    Depictive expressions of thought predate written language by thousands of years. They have evolved in communities through a kind of informal user testing that has refined them. Analyzing common visual communications reveals consistencies that illuminate how people think as well as guide design; the process can be brought into the laboratory and accelerated. Like language, visual communications abstract and schematize; unlike language, they use properties of the page (e.g., proximity and place: center, horizontal/up–down, vertical/left–right) and the marks on it (e.g., (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   39 citations  
  • Bar and Line Graph Comprehension: An Interaction of Top‐Down and Bottom‐Up Processes.Priti Shah & Eric G. Freedman - 2011 - Topics in Cognitive Science 3 (3):560-578.
    This experiment investigated the effect of format (line vs. bar), viewers’ familiarity with variables, and viewers’ graphicacy (graphical literacy) skills on the comprehension of multivariate (three variable) data presented in graphs. Fifty-five undergraduates provided written descriptions of data for a set of 14 line or bar graphs, half of which depicted variables familiar to the population and half of which depicted variables unfamiliar to the population. Participants then took a test of graphicacy skills. As predicted, the format influenced viewers’ interpretations (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Spatial Visualization in Physics Problem Solving.Maria Kozhevnikov, Michael A. Motes & Mary Hegarty - 2007 - Cognitive Science 31 (4):549-579.
    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two‐dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics‐naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high‐ and 9 low‐spatial ability) additional students completed think‐aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Electrifying diagrams for learning: principles for complex representational systems.Peter C.-H. Cheng - 2002 - Cognitive Science 26 (6):685-736.
    Six characteristics of effective representational systems for conceptual learning in complex domains have been identified. Such representations should: (1) integrate levels of abstraction; (2) combine globally homogeneous with locally heterogeneous representation of concepts; (3) integrate alternative perspectives of the domain; (4) support malleable manipulation of expressions; (5) possess compact procedures; and (6) have uniform procedures. The characteristics were discovered by analysing and evaluating a novel diagrammatic representation that has been invented to support students' comprehension of electricity—AVOW diagrams (Amps, Volts, Ohms, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Electrifying diagrams for learning: principles for complex representational systems.Peter C.-H. Cheng - 2002 - Cognitive Science 26 (6):685-736.
    Six characteristics of effective representational systems for conceptual learning in complex domains have been identified. Such representations should: (1) integrate levels of abstraction; (2) combine globally homogeneous with locally heterogeneous representation of concepts; (3) integrate alternative perspectives of the domain; (4) support malleable manipulation of expressions; (5) possess compact procedures; and (6) have uniform procedures. The characteristics were discovered by analysing and evaluating a novel diagrammatic representation that has been invented to support students' comprehension of electricity—AVOW diagrams (Amps, Volts, Ohms, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Augmenting Cognitive Architectures to Support Diagrammatic Imagination.Balakrishnan Chandrasekaran, Bonny Banerjee, Unmesh Kurup & Omkar Lele - 2011 - Topics in Cognitive Science 3 (4):760-777.
    Diagrams are a form of spatial representation that supports reasoning and problem solving. Even when diagrams are external, not to mention when there are no external representations, problem solving often calls for internal representations, that is, representations in cognition, of diagrammatic elements and internal perceptions on them. General cognitive architectures—Soar and ACT-R, to name the most prominent—do not have representations and operations to support diagrammatic reasoning. In this article, we examine some requirements for such internal representations and processes in cognitive (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations