Switch to: References

Add citations

You must login to add citations.
  1. The Equivalence of Definitions of Algorithmic Randomness.Christopher Porter - 2021 - Philosophia Mathematica 29 (2):153–194.
    In this paper, I evaluate the claim that the equivalence of multiple intensionally distinct definitions of random sequence provides evidence for the claim that these definitions capture the intuitive conception of randomness, concluding that the former claim is false. I then develop an alternative account of the significance of randomness-theoretic equivalence results, arguing that they are instances of a phenomenon I refer to as schematic equivalence. On my account, this alternative approach has the virtue of providing the plurality of definitions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Lebesgue density and classes.Mushfeq Khan - 2016 - Journal of Symbolic Logic 81 (1):80-95.
    Analyzing the effective content of the Lebesgue density theorem played a crucial role in some recent developments in algorithmic randomness, namely, the solutions of the ML-covering and ML-cupping problems. Two new classes of reals emerged from this inquiry: thepositive density pointswith respect toeffectively closed sets of reals, and a proper subclass, thedensity-one points. Bienvenu, Hölzl, Miller, and Nies have shown that the Martin-Löf random positive density points are exactly the ones that do not compute the halting problem. Treating this theorem (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Computing from projections of random points.Noam Greenberg, Joseph S. Miller & André Nies - 2019 - Journal of Mathematical Logic 20 (1):1950014.
    We study the sets that are computable from both halves of some (Martin–Löf) random sequence, which we call 1/2-bases. We show that the collection of such sets forms an ideal in the Turing degrees that is generated by its c.e. elements. It is a proper subideal of the K-trivial sets. We characterize 1/2-bases as the sets computable from both halves of Chaitin’s Ω, and as the sets that obey the cost function c(x,s)=Ωs−Ωx−−−−−−−√. Generalizing these results yields a dense hierarchy of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Characterizing lowness for Demuth randomness.Laurent Bienvenu, Rod Downey, Noam Greenberg, André Nies & Dan Turetsky - 2014 - Journal of Symbolic Logic 79 (2):526-560.
    We show the existence of noncomputable oracles which are low for Demuth randomness, answering a question in [15]. We fully characterize lowness for Demuth randomness using an appropriate notion of traceability. Central to this characterization is a partial relativization of Demuth randomness, which may be more natural than the fully relativized version. We also show that an oracle is low for weak Demuth randomness if and only if it is computable.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations