Switch to: References

Add citations

You must login to add citations.
  1. Trans‐splicing of organelle introns – a detour to continuous RNAs.Stephanie Glanz & Ulrich Kück - 2009 - Bioessays 31 (9):921-934.
    In eukaryotes, RNA trans‐splicing is an important RNA‐processing form for the end‐to‐end ligation of primary transcripts that are derived from separately transcribed exons. So far, three different categories of RNA trans‐splicing have been found in organisms as diverse as algae to man. Here, we review one of these categories: the trans‐splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. Trans‐spliced exons can be predicted from DNA sequences derived from a large number of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Sizing up the genomic footprint of endosymbiosis.Marek Elias & John M. Archibald - 2009 - Bioessays 31 (12):1273-1279.
    A flurry of recent publications have challenged consensus views on the tempo and mode of plastid (chloroplast) evolution in eukaryotes and, more generally, the impact of endosymbiosis in the evolution of the nuclear genome. Endosymbiont‐to‐nucleus gene transfer is an essential component of the transition from endosymbiont to organelle, but the sheer diversity of algal‐derived genes in photosynthetic organisms such as diatoms, as well as the existence of genes of putative plastid ancestry in the nuclear genomes of plastid‐lacking eukaryotes such as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Were eukaryotes made by sex?Michael Brandeis - 2021 - Bioessays 43 (6):2000256.
    I hypothesize that the appearance of sex facilitated the merging of the endosymbiont and host genomes during early eukaryote evolution. Eukaryotes were formed by symbiosis between a bacterium that entered an archaeon, eventually giving rise to mitochondria. This entry was followed by the gradual transfer of most bacterial endosymbiont genes into the archaeal host genome. I argue that the merging of the mitochondrial genes into the host genome was vital for the evolution of genuine eukaryotes. At the time this process (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Early steps in plastid evolution: current ideas and controversies.Andrzej Bodył, Paweł Mackiewicz & John W. Stiller - 2009 - Bioessays 31 (11):1219-1232.
    Some nuclear‐encoded proteins are imported into higher plant plastids via the endomembrane (EM) system. Compared with multi‐protein Toc and Tic translocons required for most plastid protein import, the relatively uncomplicated nature of EM trafficking led to suggestions that it was the original transport mechanism for nuclear‐encoded endosymbiont proteins, and critical for the early stages of plastid evolution. Its apparent simplicity disappears, however, when EM transport is considered in light of selective constraints likely encountered during the conversion of stable endosymbionts into (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Endosymbiotic ratchet accelerates divergence after organelle origin.Debashish Bhattacharya, Julia Van Etten, L. Felipe Benites & Timothy G. Stephens - 2023 - Bioessays 45 (1):2200165.
    We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne) in accelerating divergence (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual and methodological biases in network models.Ehud Lamm - 2009 - Annals of the New York Academy of Sciences 1178:291-304.
    Many natural and biological phenomena can be depicted as networks. Theoretical and empirical analyses of networks have become prevalent. I discuss theoretical biases involved in the delineation of biological networks. The network perspective is shown to dissolve the distinction between regulatory architecture and regulatory state, consistent with the theoretical impossibility of distinguishing a priori between “program” and “data”. The evolutionary significance of the dynamics of trans-generational and inter-organism regulatory networks is explored and implications are presented for understanding the evolution of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation