Switch to: References

Add citations

You must login to add citations.
  1. Symmetry, Compact Closure and Dagger Compactness for Categories of Convex Operational Models.Howard Barnum, Ross Duncan & Alexander Wilce - 2013 - Journal of Philosophical Logic 42 (3):501-523.
    In the categorical approach to the foundations of quantum theory, one begins with a symmetric monoidal category, the objects of which represent physical systems, and the morphisms of which represent physical processes. Usually, this category is taken to be at least compact closed, and more often, dagger compact, enforcing a certain self-duality, whereby preparation processes (roughly, states) are interconvertible with processes of registration (roughly, measurement outcomes). This is in contrast to the more concrete “operational” approach, in which the states and (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Division Algebras and Quantum Theory.John C. Baez - 2012 - Foundations of Physics 42 (7):819-855.
    Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’. It (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Operational axioms for diagonalizing states.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPTCS 195:96-115.
    In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This elementary structure plays an ubiquitous role in quantum mechanics, quantum information theory, and quantum statistical mechanics, where it provides the foundation for the notions of majorization and entropy. A natural question then arises: can we reconstruct these notions from purely operational axioms? We address this question in the framework of general probabilistic theories, presenting a set of axioms that guarantee that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark