Citations of:
Add citations
You must login to add citations.
|
|
The paper demonstrates that falsifiability is fundamental to learning. We prove the following theorem for statistical learning and sequential prediction: If a theory is falsifiable then it is learnable -- i.e. admits a strategy that predicts optimally. An analogous result is shown for universal induction. |
|
There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning (...) |