Switch to: References

Add citations

You must login to add citations.
  1. Formalism and Interpretation in Quantum Theory.Alexander Wilce - 2010 - Foundations of Physics 40 (4):434-462.
    Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Centering the Everett Interpretation.Isaac Wilhelm - 2022 - Philosophical Quarterly 72 (4):1019-1039.
    I propose an account of probability in the Everett interpretation of quantum mechanics. According to the account, probabilities are objective chances of centered propositions. As I show, the account solves a number of problems concerning the role of probability in the Everett interpretation. It also challenges an implicit assumption, concerning the aim and scope of fundamental physical theories, that is made throughout the philosophy of physics literature.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Carroll–Chen Model.Christopher Gregory Weaver - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (1):97-124.
    I argue that the Carroll-Chen cosmogonic model does not provide a plausible scientific explanation of the past hypothesis (the thesis that our universe began in an extremely low-entropy state). I suggest that this counts as a welcomed result for those who adopt a Mill-Ramsey-Lewis best systems account of laws and maintain that the past hypothesis is a brute fact that is a non-dynamical law.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Evidence and Uncertainty in Everett’s Multiverse.Paul Tappenden - 2011 - British Journal for the Philosophy of Science 62 (1):99-123.
    How does it come about then, that great scientists such as Einstein, Schrödinger and De Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled not against the correctness of the formulae, but against their interpretation. [...] The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  • Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Branching and Uncertainty.Simon Saunders & David Wallace - 2008 - British Journal for the Philosophy of Science 59 (3):293-305.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utterances typically made about (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   60 citations  
  • Everett and the Born rule.Alastair I. M. Rae - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):243-250.
  • Darwinian Populations and Natural Selection.Gry Oftedal - 2010 - International Studies in the Philosophy of Science 24 (3):333-336.
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics: Formal Aspects.André L. G. Mandolesi - 2018 - Foundations of Physics 48 (7):751-782.
    To solve the probability problem of the Many Worlds Interpretation of Quantum Mechanics, D. Wallace has presented a formal proof of the Born rule via decision theory, as proposed by D. Deutsch. The idea is to get subjective probabilities from rational decisions related to quantum measurements, showing the non-probabilistic parts of the quantum formalism, plus some rational constraints, ensure the squared modulus of quantum amplitudes play the role of such probabilities. We provide a new presentation of Wallace’s proof, reorganized to (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms.André L. G. Mandolesi - 2019 - Foundations of Physics 49 (1):24-52.
    Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it would be rational (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Everettian quantum mechanics and physical probability: Against the principle of “State Supervenience”.Lina Jansson - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:45-53.
    Everettian quantum mechanics faces the challenge of how to make sense of probability and probabilistic reasoning in a setting where there is typically no unique outcome of measurements. Wallace has built on a proof by Deutsch to argue that a notion of probability can be recovered in the many worlds setting. In particular, Wallace argues that a rational agent has to assign probabilities in accordance with the Born rule. This argument relies on a rationality constraint that Wallace calls state supervenience. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Everettian epistemic problem.Hilary Greaves - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Probability Problem in Everettian Quantum Mechanics Persists.Foad Dizadji-Bahmani - 2015 - British Journal for the Philosophy of Science 66 (2):257-283.
    Everettian quantum mechanics (EQM) results in ‘multiple, emergent, branching quasi-classical realities’ (Wallace [2012]). The possible outcomes of measurement as per ‘orthodox’ quantum mechanics are, in EQM, all instantiated. Given this metaphysics, Everettians face the ‘probability problem’—how to make sense of probabilities and recover the Born rule. To solve the probability problem, Wallace, following Deutsch ([1999]), has derived a quantum representation theorem. I argue that Wallace’s solution to the probability problem is unsuccessful, as follows. First, I examine one of the axioms (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Many worlds: decoherent or incoherent?Karim P. Y. Thébault & Richard Dawid - 2015 - Synthese 192 (5):1559-1580.
    We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Epistemic Separability and Everettian Branches: A Critique of Sebens and Carroll.Richard Dawid & Simon Friederich - 2022 - British Journal for the Philosophy of Science 73 (3):711-721.
    We discuss the proposal by Sebens and Carroll to derive the Born rule in Everettian quantum mechanics from a principle they call ‘ESP-QM’. We argue that the proposal fails: ESP-QM is not, as Sebens and Carroll argue, a ‘less general version’ of an independently plausible principle, ESP, and can only be motivated by the empirical success of quantum mechanics, including use of the Born rule. Therefore, ESP-QM cannot have the status of a meta-theoretical principle of reasoning and provides no viable (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against the empirical viability of the Deutsch–Wallace–Everett approach to quantum mechanics.Richard Dawid & Karim P. Y. Thébault - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:55-61.
    The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from empirical data rather than decision theoretic arguments, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Positive Argument Against Scientific Realism.Florian J. Boge - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (4):535-566.
    Putnam coined what is now known as the no miracles argument “[t]he positive argument for realism”. In its opposition, he put an argument that by his own standards counts as negative. But are there no positive arguments against scientific realism? I believe that there is such an argument that has figured in the back of much of the realism-debate, but, to my knowledge, has nowhere been stated and defended explicitly. This is an argument from the success of quantum physics to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The best of many worlds, or, is quantum decoherence the manifestation of a disposition?Florian J. Boge - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):135-144.
    In this paper I investigate whether the phenomenon of quantum decoherence, the vanishing of interference and detectable entanglement on quantum systems in virtue of interactions with the environment, can be understood as the manifestation of a disposition. I will highlight the advantages of this approach as a realist interpretation of the quantum formalism, and demonstrate how such an approach can benefit from advances in the metaphysics of dispositions. I will also confront some commonalities with and differences to the many worlds (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum reality: A pragmaticized neo-Kantian approach.Florian J. Boge - 2021 - Studies in History and Philosophy of Science Part A 87 (C):101-113.
    Despite remarkable efforts, it remains notoriously difficult to equip quantum theory with a coherent ontology. Hence, Healey (2017, 12) has recently suggested that ‘‘quantum theory has no physical ontology and states no facts about physical objects or events’’, and Fuchs et al. (2014, 752) similarly hold that ‘‘quantum mechanics itself does not deal directly with the objective world’’. While intriguing, these positions either raise the question of how talk of ‘physical reality’ can even remain meaningful, or they must ultimately embrace (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Everett’s Missing Postulate and the Born Rule.Per Arve - 2020 - Foundations of Physics 50 (7):665-692.
    Everett’s Relative State Interpretation has gained increasing interest due to the progress of understanding the role of decoherence. In order to fulfill its promise as a realistic description of the physical world, two postulates are formulated. In short they are for a system with continuous coordinates \, discrete variable j, and state \\), the density \=|\psi _j|^2\) gives the distribution of the location of the system with the respect to the variables \ and j; an equation of motion for the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum Theory: A Philosopher’s Overview. [REVIEW]Valia Allori - 2010 - International Studies in the Philosophy of Science 24 (3):330-333.
    Book Review of "Quantum Mechanics- a Philosopher's Overview," by Salvator Cannavo.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Quantum Theory: A Philosopher’s Overview. [REVIEW]Valia Allori - 2010 - International Studies in the Philosophy of Science 24 (3):330-333.
    Book review of "Quantum Theory: a Philosopher's Overview".
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  • Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Incoherent? No, Just Decoherent: How Quantum Many Worlds Emerge.Alexander Franklin - forthcoming - Philosophy of Science.
    The modern Everett interpretation of quantum mechanics describes an emergent multiverse. The goal of this paper is to provide a perspicuous characterisation of how the multiverse emerges making use of a recent account of (weak) ontological emergence. This will be cashed out with a case study that identifies decoherence as the mechanism for emergence. The greater metaphysical clarity enables the rebuttal of critiques due to Baker (2007) and Dawid and Th\'ebault (2015) that cast the emergent multiverse ontology as incoherent; responses (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Direct download  
     
    Export citation  
     
    Bookmark   74 citations  
  • A simple proof of Born’s rule for statistical interpretation of quantum mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some researchers have (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • The quantum measurement problem: State of play.David Wallace - 2007 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Ecstatic Language of Early Daoism: A Sufi Point of View.Esmaeil Radpour - 2015 - Transcendent Philosophy Journal 16:213-230.
    Various esoteric traditions apply different modes of expression for the same metaphysical truths. We may name the two most known esoteric languages as ecstatic and scholastic. Early Daoist use of reverse symbolism as for metaphysical truths and its critical way of viewing formalist understanding of traditional teachings, common virtues and popular beliefs show that it applies an ecstatic language, which, being called shaṭḥ in Sufi terminology, has a detailed literature and technical description in Sufism. This article tries, after a short (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Received Realist View of Quantum Mechanics.Nahuel Sznajderhaus - 2016 - Cadernos de História E Filosofia da Ciéncia.
    In this article I defend that an underlying framework exists among those interpretations of quantum mechanics which crucially consider the measurement problem as a central obstacle. I characterise that framework as the Received View on the realist interpretation of quantum mechanics. In particular, I analyse the extent to which two of the most relevant attempts at quantum mechanics, namely, many worlds interpretations and Bohmian mechanics, belong within the Received View. However, I claim that scientific realism in itself does not entail (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   59 citations