Switch to: References

Add citations

You must login to add citations.
  1. Indestructibility and the linearity of the Mitchell ordering.Arthur W. Apter - 2024 - Archive for Mathematical Logic 63 (3):473-482.
    Suppose that \(\kappa \) is indestructibly supercompact and there is a measurable cardinal \(\lambda > \kappa \). It then follows that \(A_0 = \{\delta is a measurable cardinal and the Mitchell ordering of normal measures over \(\delta \) is nonlinear \(\}\) is unbounded in \(\kappa \). If the Mitchell ordering of normal measures over \(\lambda \) is also linear, then by reflection (and without any use of indestructibility), \(A_1= \{\delta is a measurable cardinal and the Mitchell ordering of normal measures (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The failure of GCH at a degree of supercompactness.Brent Cody - 2012 - Mathematical Logic Quarterly 58 (1):83-94.
    We determine the large cardinal consistency strength of the existence of a λ-supercompact cardinal κ such that equation image fails at λ. Indeed, we show that the existence of a λ-supercompact cardinal κ such that 2λ ≥ θ is equiconsistent with the existence of a λ-supercompact cardinal that is also θ-tall. We also prove some basic facts about the large cardinal notion of tallness with closure.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence.Arthur W. Apter - 2006 - Mathematical Logic Quarterly 52 (5):457-463.
    We construct models for the level by level equivalence between strong compactness and supercompactness in which for κ the least supercompact cardinal and δ ≤ κ any cardinal which is either a strong cardinal or a measurable limit of strong cardinals, 2δ > δ+ and δ is < 2δ supercompact. In these models, the structure of the class of supercompact cardinals can be arbitrary, and the size of the power set of κ can essentially be made as large as desired. (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Level by level equivalence and strong compactness.Arthur W. Apter - 2004 - Mathematical Logic Quarterly 50 (1):51.
    We force and construct models in which there are non-supercompact strongly compact cardinals which aren't measurable limits of strongly compact cardinals and in which level by level equivalence between strong compactness and supercompactness holds non-trivially except at strongly compact cardinals. In these models, every measurable cardinal κ which isn't either strongly compact or a witness to a certain phenomenon first discovered by Menas is such that for every regular cardinal λ > κ, κ is λ strongly compact iff κ is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Indestructibility and level by level equivalence and inequivalence.Arthur W. Apter - 2007 - Mathematical Logic Quarterly 53 (1):78-85.
    If κ < λ are such that κ is indestructibly supercompact and λ is 2λ supercompact, it is known from [4] that {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ violates level by level equivalence between strong compactness and supercompactness}must be unbounded in κ. On the other hand, using a variant of the argument used to establish this fact, it is possible to prove that if κ < λ are (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indestructibility and measurable cardinals with few and many measures.Arthur W. Apter - 2008 - Archive for Mathematical Logic 47 (2):101-110.
    If κ < λ are such that κ is indestructibly supercompact and λ is measurable, then we show that both A = {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ carries the maximal number of normal measures} and B = {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ carries fewer than the maximal number of normal measures} are unbounded (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Indestructibility and stationary reflection.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):228-236.
    If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ -strategically closed forcing and λ is weakly compact, then we show thatA = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets}must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Indestructibility, HOD, and the Ground Axiom.Arthur W. Apter - 2011 - Mathematical Logic Quarterly 57 (3):261-265.
    Let φ1 stand for the statement V = HOD and φ2 stand for the Ground Axiom. Suppose Ti for i = 1, …, 4 are the theories “ZFC + φ1 + φ2,” “ZFC + ¬φ1 + φ2,” “ZFC + φ1 + ¬φ2,” and “ZFC + ¬φ1 + ¬φ2” respectively. We show that if κ is indestructibly supercompact and λ > κ is inaccessible, then for i = 1, …, 4, Ai = df{δ κ is inaccessible. We show it is also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility, measurability, and degrees of supercompactness.Arthur W. Apter - 2012 - Mathematical Logic Quarterly 58 (1):75-82.
    Suppose that κ is indestructibly supercompact and there is a measurable cardinal λ > κ. It then follows that A1 = {δ < κ∣δ is measurable, δ is not a limit of measurable cardinals, and δ is not δ+ supercompact} is unbounded in κ. If in addition λ is 2λ supercompact, then A2 = {δ < κ∣δ is measurable, δ is not a limit of measurable cardinals, and δ is δ+ supercompact} is unbounded in κ as well. The large cardinal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructibility under adding Cohen subsets and level by level equivalence.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):271-279.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which the least supercompact cardinal κ has its strong compactness indestructible under adding arbitrarily many Cohen subsets. There are no restrictions on the large cardinal structure of our model.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.
    We force and obtain three models in which level by level equivalence between strong compactness and supercompactness holds and in which, below the least supercompact cardinal, GCH fails unboundedly often. In two of these models, GCH fails on a set having measure 1 with respect to certain canonical measures. There are no restrictions in all of our models on the structure of the class of supercompact cardinals.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indestructibility and destructible measurable cardinals.Arthur W. Apter - 2016 - Archive for Mathematical Logic 55 (1-2):3-18.
    Say that κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}’s measurability is destructible if there exists a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}. It then follows that A1={δ<κ∣δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{1} = \{\delta < \kappa \mid \delta}$$\end{document} is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ’s measurability is destructible when forcing with partial orderings having rank below λδ} is unbounded (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • A universal indestructibility theorem compatible with level by level equivalence.Arthur W. Apter - 2015 - Archive for Mathematical Logic 54 (3-4):463-470.
    We prove an indestructibility theorem for degrees of supercompactness that is compatible with level by level equivalence between strong compactness and supercompactness.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • An L-like model containing very large cardinals.Arthur W. Apter & James Cummings - 2008 - Archive for Mathematical Logic 47 (1):65-78.
    We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with a strong form of diamond and a version of square consistent with supercompactness. This generalises a result due to the first author. There are no restrictions in our model on the structure of the class of supercompact cardinals.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation