Switch to: References

Add citations

You must login to add citations.
  1. The Point of Primitive Ontology.Paula Reichert & Dustin Lazarovici - 2022 - Foundations of Physics 52 (6):1-18.
    AbstractBohmian mechanics grounds the predictions of quantum mechanics in precise dynamical laws for a primitive ontology of point particles. In an appraisal of the de-Broglie–Bohm theory, the paper discusses the crucial epistemological and conceptual role that a primitive ontology plays within a physical theory. It argues that quantum theories without primitive ontology fail to make contact with observable reality in a clear and consistent manner. Finally, it discusses Einstein’s epistemological model and why it supports the primitive ontology approach.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Thermal substances: a Neo-Aristotelian ontology of the quantum world.Robert C. Koons - 2019 - Synthese 198 (Suppl 11):2751-2772.
    The paper addresses a problem for the unification of quantum physics with the new Aristotelianism: the identification of the members of the category of substance. I outline briefly the role that substance plays in Aristotelian metaphysics, leading to the postulating of the Tiling Constraint. I then turn to the question of which entities in quantum physics can qualify as Aristotelian substances. I offer an answer: the theory of thermal substances, and I construct a fivefold case for thermal substances, based on (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Classical and Non-relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles.Sergio Hernández-Zapata & Ernesto Hernández-Zapata - 2010 - Foundations of Physics 40 (5):532-544.
    A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle’s configurations evolve in space-time in terms of a parameter σ with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Classical Limit in Bohm’s Theory.Gary E. Bowman - 2005 - Foundations of Physics 35 (4):605-625.
    The standard means of seeking the classical limit in Bohmian mechanics is through the imposition of vanishing quantum force and quantum potential for pure states. We argue that this approach fails, and that the Bohmian classical limit can be realized only by combining narrow wave packets, mixed states, and environmental decoherence.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • How Humean is Bohumianism?Tomasz Bigaj & Antonio Vassallo - 2020 - Foundations of Physics (10):1-18.
    An important part of the influential Humean doctrine in philosophy is the supervenience principle (sometimes referred to as the principle of separability). This principle asserts that the complete state of the world supervenes on the intrinsic properties of its most fundamental components and their spatiotemporal relations (the so-called Humean mosaic). There are well-known arguments in the literature purporting to show that in quantum mechanics the Humean supervenience principle is violated, due to the existence of entangled states. Recently, however, arguments have (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Classical Limit of Quantum Mechanics.Valia Allori & Nino Zanghì - 2008 - Foundations of Physics 10.1007/S10701-008-9259-4 39 (1):20-32.
    Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Inertial Trajectories in de Broglie-Bohm Quantum Theory: An Unexpected Problem.Pablo Acuña - 2016 - International Studies in the Philosophy of Science 30 (3):201-230.
    A salient feature of de Broglie-Bohm quantum theory is that particles have determinate positions at all times and in all physical contexts. Hence, the trajectory of a particle is a well-defined concept. One then may expect that the closely related notion of inertial trajectory is also unproblematically defined. I show that this expectation is not met. I provide a framework that deploys six different ways in which dBB theory can be interpreted, and I state that only in the canonical interpretation (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontologie quantistiche di particelle, campi e lampi.Nino Zanghi - unknown
    La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggi regolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondo macroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassa temperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, dai meccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’è quasi nulla nel mondo che (...)
     
    Export citation  
     
    Bookmark  
  • Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 58-75.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   53 citations