Citations of:
Add citations
You must login to add citations.
|
|
Advancements in machine learning have fuelled the popularity of using AI decision algorithms in procedures such as bail hearings, medical diagnoses and recruitment. Academic articles, policy texts, and popularizing books alike warn that such algorithms tend to be opaque: they do not provide explanations for their outcomes. Building on a causal account of transparency and opacity as well as recent work on the value of causal explanation, I formulate a moral concern for opaque algorithms that is yet to receive a (...) |
|
Automated algorithms are silently making crucial decisions about our lives, but most of the time we have little understanding of how they work. To counter this hidden influence, there have been increasing calls for algorithmic transparency. Much ink has been spilled over the informational account of algorithmic transparency—about how much information should be revealed about the inner workings of an algorithm. But few studies question the power structure beneath the informational disclosure of the algorithm. As a result, the information disclosure (...) No categories |
|
Artificial intelligence tools used in employment decision-making cut across the multiple stages of job advertisements, shortlisting, interviews and hiring, and actual and potential bias can arise in each of these stages. One major challenge is to mitigate AI bias and promote fairness in opaque AI systems. This paper argues that the equal opportunity merit principle is an ethical approach for fair AI employment decision-making. Further, explainable AI can mitigate the opacity problem by placing greater emphasis on enhancing the understanding of (...) |