Summary |
Generalized quantifier theory studies the semantics of quantifier expressions, like, `every’, `some’, `most’, ‘infinitely many’, `uncountably many’, etc. The classical version was developed in the 1980s, at the interface of linguistics, mathematics and philosophy. In logic generalized quantifier are often defined as classes of models closed on isomorphism (topic neutral). For instance, quantifier “infinitely many” may be defined as a class of all infinite models. Equivalently, in linguistics generalized quantifiers are formally treated as relations between subset of the universe. For instance, in sentence `Most of the students are smart”, quantifier `most’ is a binary relation between the set of students and the set of smart people. The sentence is true if and only if the cardinality of the set of smart students is greater than the cardinality of the set of students who are not smart. |